

PREPA IRP 2019 MiniGrids & Transmission Assessment August 13, 2019

Confidential & Proprietary © Siemens Industry, Inc. 2019

Siemens PTI

MiniGrids

Restricted

WWW.Siemens.com

Introduction

- In parallel with the generation expansion plan Siemens PTI evaluated PREPA's transmission system and determined the convenience of its separation into 8 electrical islands called MiniGrids for short, considering the geography of the system and the expected time to repair for the various overhead lines.
- The concept is that following (or even in preparation for) a major event the system can be segregated into autonomous electrical islands that can operate separately from each other for extended periods of time including months.
- As presented earlier, the expansion plan is being designed so that there will be local resources to the MiniGrids and next we will present how this resources achieve balance with Critical, Priority and the total load. Also we will provide the identified investments necessary to consolidate the MiniGrids.
- Supplementary to the MiniGrids, microgrids as proposed for areas where there is difficulty of access and it would be impractical to harden the system to integrate them to the MiniGrid.

Eight MiniGrids – Ten Areas

Red lines - Under 10 days with a target of few hours or ride through the storm

Yellow - Under 30 days after being hardened in accordance with new codes and standards, with a target of under 10 days

Green - Due to geography, could take over a month to repair after a major event.

Blue - 230 kV Long lines, Long recovery time, Not used for determining Minigrid boundaries due to inter-Minigrid in natural

Ten Areas considering that Ponce Minigrid is consist of Ponce East and Ponce West, and Bayamon and San Juan are one MiniGrid

SIEMENS

Ingenuity for life

Page 4

MiniGrids – Loads Category

SIEMENS

- Critical Loads: these loads should either ride through the storm or must be available shortly after. They are crucial for the restauration effort, Including hospitals, airports, shelters and town center, police/fire stations, storm water pumps, critical water supply/treatment AAA facilities and certain communication facilities.
- Priority Loads: these loads are necessary to restore normalcy to localities and include shopping centers and commercial establishments, gas stations, industries, higher density residential areas. These loads must be reconnected shortly after the Critical Loads. Overhead lines may be inspected and repaired; no more than 10 days for the full connection.
- Balance Loads: these are the rest of the loads within the minigrid and the objective is to restore them also within 10 days of the event, but more overhead lines may be involved and 100% restauration may exceed 10 days.

2019 Critical/Priority/Balance Night Peak Load , MW											
MiniGrid	Total Load	Critical	Priority	Balance	% Critical	% Priority	% Balance				
Arecibo	234.2	117.2	60.6	56.4	50%	26%	24%				
Caguas	306.7	128.2	74.4	104.1	42%	24%	34%				
Carolina	310.8	132.9	33.7	144.2	43%	11%	46%				
Сауеу	101.1	59.7	29.9	11.5	59%	30%	11%				
Mayaguez North	163.5	85.1	7.5	70.9	52%	5%	43%				
Mayaguez South	161.7	110.4	9.7	41.6	68%	6%	26%				
Ponce	332.3	144.2	79.2	108.9	43%	24%	33%				
San Juan	1050.7	399.0	185.0	466.7	38%	18%	44%				
Total	2660.9	1176.7	480.0	1004.2	44%	18%	38%				

MiniGrids – Microgrids Loads

The load can be located in the MiniGrid or Microgrid:

• 16 % of the critical loads and 5% of the priority loads are located in the microgrids that require similar restoration time

	2019 MiniGrid/Microgrid Night Peak Load, MW											
		MiniGrid	Microgrid									
MiniGrid	Total	Connected	Connected	% MiniGrid	% Microgrid							
Arecibo	234.2	168.7	65.5	72%	28%							
Caguas	306.7	271.7	35.1	89%	11%							
Carolina	310.8	296.6	14.1	95%	5%							
Сауеу	101.1	59.9	41.2	59%	41%							
Mayaguez North	163.5	139.2	24.3	85%	15%							
Mayaguez South	161.7	140.2	21.5	87%	13%							
Ponce	332.3	285.7	46.5	86%	14%							
San Juan	1050.7	961.6	89.1	92%	8%							
Total	2660.9	2323.6	337.3	87%	13%							

2019 Critical/Priority/Balance Night Peak Load, MW											
	Total	Critical	Priority	Balance	Critical %	Priority %	Balance %				
MiniGrid	2323.6	983.9	455.1	884.6	42%	20%	38%				
Microgrid	337.3	192.8	24.9	119.6	57%	7%	35%				
Total	2660.9	1176.7	480.0	1004.2	44%	18%	38%				
MiniGrid %	87%	84%	95%	88%							
Microgrid %	13%	16%	5%	12%							

MiniGrids Design

The Design of the MiniGrids (and microgrids) consist of two overarching activities:

Local Generation Resource Selection:

- The critical loads must be able to be served by thermal resources only; full coverage right after the event.
- Priority loads to be served by a combination of thermal resources and PV + Storage.
- Balance of loads to be served by a combination of thermal resources and PV + Storage, and on grid isolated mode some level of load shed is accepted.
- Microgrid loads ideally should be covered by reciprocating engines assigned by the LTCE to the region. PV + Storage can complement.

Transmission / Distribution Design:

- Hardening / new underground facilities to create a MiniGrid backbone to which the generation is connected and loads are served from.
- Building underground facilities for interconnection of critical loads.
- New underground reliable facilities for the Interconnection of MiniGrids and faster consolidation.
- Extension of the MiniGrid backbone to areas of high reliability and resiliency.
- Hardening of the existing infrastructure or replacing aging infrastructure for MiniGrid as complementary to the above.

MiniGrids Design: 115 kV Transmission

147 projects at 115 kV level analyzed for MiniGrids in the IRP context under the different categories and encompasses activities ranging from reconstruction to new lines as highlighted below.

		U .	9						
Technical Justification	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
Aging Infrastructure Replacement-MG	5	2	5	5	0	6	7	7	37
Existing Infrastructure Hardening for Reliability - MG	0	0	7	4	0	4	0	13	28
Interconnection of Critical Loads	0	1	0	1	0	0	4	0	6
Interconnection of Minigrids	0	0	1	0	3	0	0	0	4
Minigrid Backbone Extensions to Create High									
Reliability/Resiliency Zones	0	0	0	0	0	0	0	2	2
Minigrid Main Backbone	8	10	13	9	3	11	7	9	70
Total	13	13	26	19	6	21	18	31	147

= Arecibo	13	Carc
Line Hardening/Reconstruction	1	Li
New Underground Construction	2	
Switchyard Hardening/Reconstruction	10	N
🗏 Bayamón	13	S۱
Line Hardening/Reconstruction	4	🗆 Isla
New Underground Construction	1	Li
Switchyard Hardening/Reconstruction	8	
🗏 Caguas	26	
Line Hardening/Reconstruction	8	
New Transmission Line	1	
New Underground Construction	4	
Switchyard Hardening/Reconstruction	13	

🗏 Carolina	19
Line Hardening/Reconstruction	5
New Underground Construction	4
Switchyard Hardening/Reconstruction	10
🖃 Isla	6
Line Hardening/Reconstruction	6

115 kV projects by Project Type

🗏 Mayaguez	21
Line Hardening/Reconstruction	8
Switchyard Hardening/Reconstruction	13
Ponce	18
Line Hardening/Reconstruction	3
Switchyard Hardening/Reconstruction	15
🗏 San Juan	31
Line Hardening/Reconstruction	12
New Underground Construction	5
Switchyard Hardening/Reconstruction	14

SIEMENS

Ingenuity for life

MiniGrids Design: 115 kV Transmission

Project Description		Technical Justification
Arecibo		
	۶E	Minigrid Main Backbone
		Minigrid Main Backbone
	2750	Minigrid Main Backbone
		Minigrid Main Backbone
		Minigrid Main Backbone
	Έ	Minigrid Main Backbone
		Minigrid Main Backbone
		Minigrid Main Backbone
		Minigrid Main Backbone
		Minigrid Main Backbone
		Minigrid Main Backbone
	XLPE	Minigrid Backbone Extensions
		Minigrid Main Backbone
		Minigrid Backbone Extensions

- 70 out of the 147 projects are associated with MiniGrid Main Backbone
- One of the most important investments are those associated with new transmission lines / underground cables, which are presented here by area and technical justification.
- Most of them are associated with forming the MiniGrid main backbone

MiniGrids Design: Transmission 115 kV

Overview of the key 115 kV projects designed to support the backbone of the MiniGrids or create interconnections between MiniGrid for fasted integration.

SIEMENS

Also provides a high level view of the spatial distribution of resources

MiniGrids Design: 38 kV Transmission

 330 projects at 38 kV level analyzed for MiniGrids in the IRP context under different categories and encompasses activities ranging from reconstruction to new lines as highlighted below.

Technical Justification	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
Existing Infrastructure Hardening for Reliability - MG	0	0	30	7	0	25	0	0	62
Interconnection of Critical Loads	31	24	24	15	1	34	58	53	240
Interconnection of Minigrids	0	0	7	0	0	0	1	0	8
Minigrid Backbone Extensions to Create High									
Reliability/Resiliency Zones	1	1	1	2	1	0	0	10	16
Minigrid Main Backbone	1	0	1	0	1	1	0	0	4
Total	33	25	63	24	3	60	59	63	330

E Arecibo	33	E Carolina	24	🗏 Mayaguez	60
Line Hardening/Reconstruction	14	Line Hardening/Reconstruction	8	Line Hardening/Reconstruction	29
New Underground Construction	8	New Underground Construction	10	New Transmission Line	2
Switchyard Hardening/Reconstruction	11	Switchyard Hardening/Reconstruction	5	New Underground Construction	17
⊟ Bayamón	25	New Substation/Switchyard	1	Switchyard Hardening/Reconstruction	12
Line Hardening/Reconstruction	5	= Isla	3	E Ponce	59
New Underground Construction	14	Line Hardening/Reconstruction	3	Line Hardening/Reconstruction	1
Switchyard Hardening/Reconstruction	6			New Underground Construction	31
E Caguas	63			Switchyard Hardening/Reconstruction	27
Line Hardening/Reconstruction	34	38 kV projects by Project Type		🗏 San Juan	63
New Transmission Line	4			Line Hardening/Reconstruction	26
New Underground Construction	12			New Underground Construction	20
Switchyard Hardening/Reconstruction	12			Switchyard Hardening/Reconstruction	17
New Substation/Switchyard	1				

Page 11

SIEMENS

Ingenuity for life

MiniGrids Design: 38 kV Transmission

- 240 out of the 330 projects are associated with the Interconnection of Critical Loads
- Important investments are those associated with new transmission lines / underground cables, more than 120 new projects
- 107 of them are associated with the Interconnection of Critical Loads
- The rest are associated with Minigrid Backbone Extensions, Interconnection of MiniGrids, or Existing Infrastructure Hardening for Reliability – MG
- New projects will be presented in the following MiniGrids section

MiniGrids Design: 115 kV Transmission Investment

• 115 kV MiniGrid Transmission Investment By Project Type

Project Type	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
Line Hardening/Reconstruction	9.3	41.5	82.1	63.0	86.9	102.5	54.5	48.5	488.4
New Submarine Cable	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
New Transmission Line	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	2.2
New Underground Construction	80.8	57.7	145.2	181.6	0.0	0.0	0.0	120.1	585.4
Switchyard Hardening/Reconstruction	201.7	125.9	248.4	181.7	0.0	201.7	243.1	320.9	1523.4
New Substation/Switchyard	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Grand Total	291.8	225.1	477.8	426.3	86.9	304.2	297.6	489.6	2599.4

• 115 kV MiniGrid Transmission Investment By Technical Justification

Technical Justification	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
Interconnection of Minigrids	0.0	0.0	17.2	0.0	56.4	0.0	0.0	0.0	73.6
Minigrid Backbone Extensions to									
Create High Reliability/Resiliency Zones	0.0	0.0	0.0	0.0	0.0	0.0	0.0	70.4	70.4
Minimid Main Dealthene	771 4	101 0	272.0	2047	20 F		207 1	222 4	1004 F
Minigrid Main Backbone	271.4	181.3	372.0	294.7	30.5	215.4	207.1	322.1	1894.5
Interconnection of Critical Loads	0.0	36.0	0.0	52.0	0.0	0.0	67.7	0.0	155.6
Existing Infrastructure Hardening for									
Reliability - MG	0.0	0.0	65.0	58.8	0.0	66.2	0.0	59.7	249.6
Aging Infrastructure Replacement - MG	20.4	7.8	23.7	20.9	0.0	22.7	22.8	37.4	155.7
Grand Total	291.8	225.1	477.8	426.3	86.9	304.2	297.6	489.6	2599.4

MiniGrids Design: 38 kV Transmission Investment

• 38 kV MiniGrid Transmission Investment By Project Type

Project Type	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
Line Hardening/Reconstruction	57.0	13.6	188.5	46.0	17.2	203.7	2.4	108.7	637.2
New Transmission Line	0.0	0.0	23.2	0.0	0.0	25.5	0.0	0.0	48.7
New Underground Construction	64.4	121.9	153.2	115.3	0.0	215.1	412.8	145.4	1228.1
Switchyard Hardening/Reconstruction	131.3	84.7	147.8	57.0	0.0	158.2	358.2	169.8	1107.1
New Substation/Switchyard	0.0	0.0	13.6	12.2	0.0	0.0	0.0	0.0	25.8
Grand Total	252.7	220.2	526.5	230.5	17.2	602.6	773.4	423.8	3046.9

• 38 kV MiniGrid Transmission Investment By Technical Justification

Technical Justification	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
Existing Infrastructure Hardening for									
Reliability - MG	0.0	0.0	154.7	41.5	0.0	198.0	0.0	0.0	394.2
Interconnection of Critical Loads	240.5	209.3	298.7	159.4	10.4	390.9	759.8	343.8	2412.9
Interconnection of Minigrids	0.0	0.0	55.3	0.0	0.0	0.0	13.6	0.0	69.0
Minigrid Backbone Extensions to									
Create High Reliability/Resiliency Zones	5.3	10.9	2.6	29.6	6.8	0.0	0.0	80.0	135.2
Minigrid Main Backbone	6.9	0.0	15.1	0.0	0.0	13.6	0.0	0.0	35.6
Grand Total	252.7	220.2	526.5	230.5	17.2	602.6	773.4	423.8	3046.9

MiniGrids Design: 115 and 38 kV Transmission Investment

Total MiniGrid Transmission Investment

	Arecibo	Bayamón	Caguas	Carolina	Isla	Mayaguez	Ponce	San Juan	Total
115 kV	291.8	225.1	477.8	426.3	86.9	304.2	297.6	489.6	2599.4
38 kV	252.7	220.2	526.5	230.5	17.2	602.6	773.4	423.8	3046.9
Microgrid Controller for MiniGrids and Microgrids	1.4	0.4	1.2	0.3	1.2	1.2	0.5	0.5	6.8
Grand Total	545.9		1005.5		105.3		1071.6		5653.0

MiniGrids: Load Flow Analysis

Summary

- The purpose of MiniGrid load flow analysis is to assess the reliability of the PREPA's transmission system operated under MiniGrid (isolated) mode following a major event.
- Since the destruction of transmission facilities already causing grid separations, we mainly focus on the precontingency flows and bus voltages.
- S4S2B with 2019 Night Peak load condition was analyzed.
- Two stages of system operations:
 - MiniGrid with microgrids connected, as could be the situation a few weeks after the major event
 - MiniGrid with all microgrids disconnected simulating the system in further destructive scenario or few days / weeks after the event

Observation

- No thermal or voltage violations were reported before contingency based on planning criteria under emergency
- In line with the results discussed in the Integrated Steady State Analysis
- The discussion on Integrated system, Weakened system, and Existing system will be presented in the Transmission Steady State Analysis section.

Supply – Demand Balance: Arecibo MiniGrid

Resources

- The Arecibo MiniGrid under S4S2B is projected by 2023 to have 82 MW of thermal, 160 MW of Storage and 120 MW of PV (utility & customer owned)
- Note one Cambalache unit to retire in 2023 and the other unit must stay on throughout the planning period

Observations

- The local thermal resources cover the critical load (red band) for all years
- From 2021, capacity from all available resources cover the entire local load (red, yellow, and blue)
- Energy is not fully covered, indicating some level of load shedding could occur

Transmission Investment – Arecibo MiniGrid

SIEMENS

Transmission Investment – Arecibo MiniGrid

115 kV Transmission	Arec	ibo
Technical Justification	# of Projects	Million \$
Aging Infrastructure Replacement-MG	5	20
Existing Infrastructure Hardening for		
Reliability - MG	0	0
Interconnection of Critical Loads	0	0
Interconnection of Minigrids	0	0
Minigrid Backbone Extensions to		
Create High Reliability/Resiliency	0	0
Minigrid Main Backbone	8	271
Grand Total	13	292

115 kV Transmission	Arecibo				
Project Type	# of Projects	Million \$			
Line Hardening/Reconstruction	1	9			
New Submarine Cable	0	0			
New Substation/Switchyard	0	0			
New Transmission Line	0	0			
New Underground Construction	2	81			
Switchyard Hardening/Reconstruction	10	202			
Grand Total	13	292			

38 kV Transmission	Arecibo				
Technical Justification	# of Projects	Million \$			
Existing Infrastructure Hardening for					
Reliability - MG	0	0			
Interconnection of Critical Loads	31	240			
Interconnection of Minigrids	0	0			
Minigrid Backbone Extensions to					
Create High Reliability/Resiliency	1	5			
Minigrid Main Backbone	1	7			
Grand Total	33	253			

38 kV Transmission	Arecibo				
Project Type	# of Projects	Million \$			
Line Hardening/Reconstruction	14	57			
New Substation/Switchyard	0	0			
New Transmission Line	0	0			
New Underground Construction	8	64			
Switchyard Hardening/Reconstruction	11	131			
Grand Total	33	253			

Supply – Demand Balance: Caguas MiniGrid

Resources

 The Caguas area under S4S2B is projected by 2024 to have 92.8 MW of thermal (4 new peakers), 300 MW of Storage and 520 MW of PV (utility & customer owned)

Observations

- By 2021 the local thermal resources cover the critical load
- From 2021, capacity from all available resources cover the entire local load
- Energy is not fully covered until 2028, indicating some level of load shedding could occur

Supply – Demand Balance: Cayey MiniGrid

——Thermal Max Energy (GWh)

Total Energy thermal + PV

Resources

 The Cayey area under S4S2B is projected by 2022 to have 46.4 MW of thermal (2 new peakers), 160 MW of Storage and 120 MW of PV (utility & customer owned)

Observations

- By 2021 the local thermal resources cover the critical load (red band)
- From 2021, capacity from all available resources cover the entire local load
- Energy is not fully covered until 2023, indicating some level of load shedding could occur during the first couple years

Priority Load

Critical Load

Transmission Investment – Caguas and Cayey MiniGrids

Transmission Investment – Caguas and Cayey MiniGrids

115 kV Transmission	Caguas				
Technical Justification	# of Projects	Million \$			
Aging Infrastructure Replacement-MG	5	24			
Existing Infrastructure Hardening for					
Reliability - MG	7	65			
Interconnection of Critical Loads	0	0			
Interconnection of Minigrids	1	17			
Minigrid Backbone Extensions to					
Create High Reliability/Resiliency	0	0			
Minigrid Main Backbone	13	372			
Grand Total	26	478			

115 kV Transmission	Caguas					
Project Type	# of Projects	Million \$				
Line Hardening/Reconstruction	8	82				
New Submarine Cable	0	0				
New Substation/Switchyard	0	0				
New Transmission Line	1	2				
New Underground Construction	4	145				
Switchyard Hardening/Reconstruction	13	248				
Grand Total	26	478				

38 kV Transmission	Caguas				
Technical Justification	# of Projects	Million \$			
Existing Infrastructure Hardening for					
Reliability - MG	30	155			
Interconnection of Critical Loads	24	299			
Interconnection of Minigrids	7	55			
Minigrid Backbone Extensions to					
Create High Reliability/Resiliency	1	3			
Minigrid Main Backbone	1	15			
Grand Total	63	526			

38 kV Transmission	Caguas				
Project Type	# of Projects	Million \$			
Line Hardening/Reconstruction	34	189			
New Substation/Switchyard	1	14			
New Transmission Line	4	23			
New Underground Construction	12	153			
Switchyard Hardening/Reconstruction	12	148			
Grand Total	63	526			

MiniGrid VoLL Analysis

Introduction

- Assess the economic impact of not advancing the proposed transmission investments
- Value of Lost Load (VoLL) was calculated under MiniGrid operations following a major event
- MiniGrids were separated into individual load pockets after multiple line outages assuming no MiniGrids transmission investment

Assumptions

- Level 1: transmission lines that are assumed to be out immediately after a major event
- Level 2: transmission lines that can be brought back in service one week after the event
- 2019 Night Peak load and 2025 S4S2B generation plan from LTCE
- Average load factor: 75% of the peak load
- Cost of unserved load: Critical Load \$32,000/MWh, Priority Load \$10,000/MWh, Balance Load \$2,000/MWh

Methodology

- Apply transmission outages to convert the Base Case to MiniGrids
- Apply Level 1 outages for the MiniGrid and identify the individual load pockets
- Apply Level 2 changes (put lines back into service) and identify the new load pockets after Level 2 changes
- Analyze load to generation balance for each individual load pocket and calculate the Load Not Served, the Energy Not Served, the Cost of Energy Not Served, broken down by the Critical, Priority, and Balance load

Conclusion

 The total VoLL for any severe event that caused transmission lines out for a few weeks would be more than enough to justify the total cost of the proposed MiniGrid transmission investment

VoLL – Caguas and Cayey MiniGrids

					Lc	Load Not Served (MW)				Energy Not Served (MWh)				Cost of Energy Not Served (k\$)				
MiniGrid		al MiniG	rid Load (MW)		Pre Minio	Grid CapE	x		Pre MiniG	irid CapEx	-	Post MiniGrid CapEx		Pre MiniG	rid CapEx		Post MiniGrid CapEx
	Critical	Priority	Balance	Subtotal	Critical	Priority	Balance	Subtotal	Critical	Priority	Balance	Subtotal	Subtotal	Critical	Priority	Balance	Subtotal	Subtotal
							•		1st W	/eek (Leve	l 1+Level 2	out)						
Caguas &	188	104	116	408	110	35	87	233	13,905	4,397	10,994	29,296	0	\$444,948	\$43,967	\$21,988	\$510,904	\$0
Cayey	100	104	110	-00					After 1st V	Veek (Lev	el 1 out, Le	evel 2 in), Pe	er Week					
					53	26	31	110	6,688	3,275	3,871	13,834	0	\$214,001	\$32,755	\$7,741	\$254,497	\$0

			Example: an event for 4 weeks
Total MiniGrid CapEx (k\$)	# of Weeks to Justify the CapEx (Critical Loads Only)	# of Weeks to Justify the CapEx (All Loads)	Total Cost of Energy Not Served (k\$)
\$1,008,917	3.7	3	\$1,274,396

Supply – Demand Balance: Carolina MiniGrid

Resources

 The Carolina Area under S4S2B by 2023 is projected to have 92.8 MW of thermal (4 new peakers), 260 MW of Storage and 440 MW of PV (utility & customer owned)

Observations

- By 2021 the local thermal resources cover the critical load
- From 2022, capacity from all available resources cover the entire local load
- Energy is not fully covered until 2026, indicating some level of load shedding could occur

Transmission Investment – Carolina MiniGrid

CAROLINA REGION

Transmission Lines

- 230 kV Lines

Legend

Critical

O Priority

Transmission Investment – Carolina MiniGrids

115 kV Transmission	Carolina			
Technical Justification	# of Projects	Million \$		
Aging Infrastructure Replacement-MG	5	21		
Existing Infrastructure Hardening for				
Reliability - MG	4	59		
Interconnection of Critical Loads	1	52		
Interconnection of Minigrids	0	0		
Minigrid Backbone Extensions to				
Create High Reliability/Resiliency	4	0		
Minigrid Main Backbone	13	295		
Grand Total	27	426		

115 kV Transmission	Carolina			
Project Type	# of Projects	Million \$		
Line Hardening/Reconstruction	5	63		
New Submarine Cable	4	0		
New Substation/Switchyard	2	0		
New Transmission Line	0	0		
New Underground Construction	5	182		
Switchyard Hardening/Reconstruction	11	182		
Grand Total	27	426		

38 kV Transmission	Carolina			
Technical Justification	# of Projects	Million \$		
Existing Infrastructure Hardening for				
Reliability - MG	7	42		
Interconnection of Critical Loads	15	159		
Interconnection of Minigrids	0	0		
Minigrid Backbone Extensions to				
Create High Reliability/Resiliency	2	30		
Minigrid Main Backbone	0	0		
Grand Total	24	231		

38 kV Transmission	Carolina			
Project Type	# of Projects	Million \$		
Line Hardening/Reconstruction	8	46		
New Substation/Switchyard	1	12		
New Transmission Line	0	0		
New Underground Construction	10	115		
Switchyard Hardening/Reconstruction	5	57		
Grand Total	24	231		

VoLL – Carolina MiniGrid

						Lo	oad Not	Served (M	W)			Energy N	lot Serve	d (MWh)			Cost of En	ergy Not S	Served (k\$)	
MiniGrid		al MiniG	rid Load (MW)			Pre Mir	iGrid CapE	x			Pre MiniG	rid CapEx		Post MiniGrid CapEx		Pre MiniGrid CapEx M		Post MiniGrid CapEx	
	Critical	Priority	Balance	Subto	otal	Critical	Priorit	y Balance	Subtotal	Cri	itical	Priority	Balance	Subtotal	Subtotal	Critical	Priority	Balance	Subtotal	Subtotal
										1	1st W	/eek (Leve	l 1+Level 2	out)						
Carolina	122	34	111	211		76	16	83	174		9,598	1,979	10,400	21,977	0	\$307,132	\$19,789	\$20,801	\$347,721	\$0
Caronna	a 133 34 144 311							Afte	er 1st V	Veek (Leve	el 1 out, Le	evel 2 in), P	er Week		1					
						70	14	73	158		8,864	1,826	9,187	19,877	0	\$283,661	\$18,255	\$18,374	\$320,289	\$0
	-			Γ										Exam	ple: an					-
				L										event	for <mark>4 we</mark>	eks				
						al Mini apEx (k	Grid	f of Weel the Capl Load				Weeks CapEx (<i>f</i>		y En	al Cost o lergy Not rved (k\$	t				
					\$	5762,36	57	2	2.7			2.3		\$1	,308,590	,				

Supply – Demand Balance: Mayaguez North MG

Resources

 The Mayaguez North Area under S4S2B by 2022 is projected to have 92.8 MW of thermal (4 new peakers), 160 MW of Storage and 225 MW of PV (utility & customer owned)

Observations

- By 2021 the local thermal resources cover the critical load (red band)
- From 2021, capacity from all available resources cover the entire local load
- Energy is not fully covered until 2022, indicating some level of load shedding could occur during the first couple years

Supply – Demand Balance: Mayaguez South MG

Energy Coverage GWh

Resources

 The Mayaguez South Area under S4S2B is projected to have resource from thermal GT, 200 MW until 2023, then reduce to 100 starting 2030

SIEMENS

Ingenuity for life

Observations

- Local thermal resources cover the critical load (red band) for all years
- Energy is fully covered throughout, except for a slight shortage in 2030 to 2031

Transmission Investment – Mayaguez North and South MG

Project Number	Project Description	
	Ne	ey
N1	Fie	
	Ne	IS
N2	@ 2	
N3	Ne	SIS
N S	@ 2	
N4	Ne	
114	Sec	
	Ne	
N5	Me	00
	kcn	
	Ne	
N6	(Ve	
	TC	
	Net	
N7	Ind	
	sec	
N8	Ne	
	Hos	
N9	Ne	n.
	Sec	
N10	Ne	
	San	
N11	Net	
	Cor	
N12	Ne)
	134	
N13	Ne	
	Urb	
N14	Unc	4.
	Sec	
N15	Unc	2-
	800	
N16	Unc	I.
	Gue	

Restricted © Siemens Industry, Inc. 2019

Transmission Investment – Mayaguez North and South MG

115 kV Transmission	Mayaguez			
Technical Justification	# of Projects	Million \$		
Aging Infrastructure Replacement-MG	6	23		
Existing Infrastructure Hardening for				
Reliability - MG	4	66		
Interconnection of Critical Loads	0	0		
Interconnection of Minigrids	0	0		
Minigrid Backbone Extensions to				
Create High Reliability/Resiliency	0	0		
Minigrid Main Backbone	11	215		
Grand Total	21	304		

115 kV Transmission	Mayaguez			
Project Type	# of Projects	Million \$		
Line Hardening/Reconstruction	8	102		
New Submarine Cable	0	0		
New Substation/Switchyard	0	0		
New Transmission Line	0	0		
New Underground Construction	0	0		
Switchyard Hardening/Reconstruction	13	202		
Grand Total	21	304		

38 kV Transmission	Mayaguez			
Technical Justification	# of Projects	Million \$		
Existing Infrastructure Hardening for				
Reliability - MG	25	198		
Interconnection of Critical Loads	34	391		
Interconnection of Minigrids	0	0		
Minigrid Backbone Extensions to				
Create High Reliability/Resiliency	0	0		
Minigrid Main Backbone	1	14		
Grand Total	60	603		

38 kV Transmission	Mayaguez			
Project Type	# of Projects	Million \$		
Line Hardening/Reconstruction	29	204		
New Substation/Switchyard	0	0		
New Transmission Line	2	26		
New Underground Construction	17	215		
Switchyard Hardening/Reconstruction	12	158		
Grand Total	60	603		

Supply – Demand Balance: San Juan MG-Bayamon

Resources

 Bayamon area under S4S2B by 2025 is projected to have a new 305 MW of thermal (no new peaker and including a new CCGT at Palo Seco), 120 MW of Storage and 540 MW of PV (utility scale and customer owned)

Observations

- Local thermal resources cover the critical load for all years
- The load, by energy, is expected to be fully covered throughout, even considering the retirements

Transmission Investment – San Juan MG-Bayamon

SIEMENS

Supply – Demand Balance: San Juan MG-San Juan

Resources

 San Juan area under S4S2B by 2024 is projected to have 400 MW of thermal (no new peaker), 120 MW of Storage and 60 MW of PV (utility scale)

SIEMENS

Ingenuity for life

Observations

- The LTCE retired all the steam generation in SJ and SJ 6 in 2024, and install the new CCGT starting 2020, and retire one unit in 2035
- Local thermal resources cover the critical load for all years
- Capacity from all available local resources cover most of the load
- Energy is calculated to be almost fully covered, considering resources from Bayamon area in the same MiniGrid can be used
Transmission Investment – San Juan MG-San Juan (1)

Transmission Investment – San Juan MG-San Juan (2)

SIEMENS

Transmission Investment – San Juan MiniGrid

115 kV Transmission	San J	uan
Technical Justification	# of Projects	Million \$
Aging Infrastructure Replacement-MG	7	37
Existing Infrastructure Hardening for		
Reliability - MG	13	60
Interconnection of Critical Loads	0	0
Interconnection of Minigrids	0	0
Minigrid Backbone Extensions to		
Create High Reliability/Resiliency	2	70
Minigrid Main Backbone	10	322
Grand Total	32	490

115 kV Transmission	San J	uan
Project Type	# of Projects	Million \$
Line Hardening/Reconstruction	13	49
New Submarine Cable	0	0
New Substation/Switchyard	0	0
New Transmission Line	0	0
New Underground Construction	5	120
Switchyard Hardening/Reconstruction	14	321
Grand Total	32	490

38 kV Transmission San Juan				
Technical Justification	# of Projects	Million \$		
Existing Infrastructure Hardening for				
Reliability - MG	0	0		
Interconnection of Critical Loads	53	344		
Interconnection of Minigrids	0	0		
Minigrid Backbone Extensions to				
Create High Reliability/Resiliency	10	80		
Minigrid Main Backbone	0	0		
Grand Total	63	424		

38 kV Transmission	San J	uan
Project Type	# of Projects	Million \$
Line Hardening/Reconstruction	26	109
New Substation/Switchyard	0	0
New Transmission Line	0	0
New Underground Construction	20	145
Switchyard Hardening/Reconstruction	17	170
Grand Total	63	424

VoLL – San Juan MiniGrid

					Lo	oad Not S	erved (M	W)	Energy Not Served (MWh)				Cost of Energy Not Served (k\$)					
MiniGrid	Total MiniGrid Load (MW)			(MW)	Pre MiniGrid CapEx			Pre MiniGrid CapEx		Post MiniGrid CapEx		Pre Mini	Grid CapE	x	Post MiniGrid CapEx			
	Critical	Priority	Balance	Subtotal	Critical	Priority	Balance	Subtotal	Critical	Priority	Balance	Subtotal	Subtotal	Critical	Priority	Balance	Subtotal	Subtotal
									1st W	/eek (Leve	l 1+Level 2	out)						
San Juan-	399	185	467	1051	224	121	284	629	28,276	15,193	35,759	79,228	0	\$904,826	\$151,932	\$71,518	\$1,128,276	\$0
Bayamon	555	105	407	1051	After 1st Week (Level 1 out, Level 2 in), Per Week													
					177	94	244	515	22,323	11,844	30,701	64,868	0	\$714,330	\$118,439	\$61,402	\$894,171	\$0

			Example: an event for <mark>4 weeks</mark>
Total MiniGrid CapEx (k\$)	# of Weeks to Justify the CapEx (Critical Loads Only)	# of Weeks to Justify the CapEx (All Loads)	Total Cost of Energy Not Served (k\$)
\$1,432,630	1.8	1.4	\$3,810,788

Supply – Demand Balance: Ponce MiniGrid-East

Resources

 Ponce East area under S4S2B by 2026 is projected to have 46.4 MW of thermal (2 new peakers) after the retirement of Aguirre CC in 2025, 0 MW of Storage and 30 MW of PV (customer owned)

Observations

- The LTCE retired all the thermal generation in Ponce East and install only new peaker units in 2026 and 2028
- Local thermal resources cover the critical load for all years
- Energy is calculated to be fully covered, considering resources from Ponce West area in the same MiniGrid can be used

Supply – Demand Balance: Ponce MiniGrid-West

Resources

 Ponce West area under S4S2B by 2025 is projected to have 302 MW of Costa Sur CC thermal generation (no new peaker), 0 MW of Storage and 12 MW of PV (customer owned)

Observations

- The LTCE retired all the thermal generation in Ponce West by 2024 and install a new CC unit in 2025
- Considering resources from Ponce East area in the same MiniGrid:
 - All critical loads in Ponce MiniGrid are fully covered by thermal resources
 - Energy is fully covered in Ponce MiniGrid

Transmission Investment – *Ponce MiniGrid*

Transmission Investment – Ponce MiniGrid

Project	
Number	Project Description
N1	
N2	
N3	
N4	
N5	
N6	
N7	
N8	
N9	
N10	
N11	
N12	
N13	
N14	
N15	
N16	
N17	

Project Number	Project Description
N18	1
N19	
N20	
N21	
N22	
N23	
N24	
N25	
N26	
N27	
N28	
N29	
N30	
N31	a a
N32	
N33	
N34	Sup. 010616 500. 5571 18000 1.1. 100 2 @ 2 000 Kemin cu

Faye ++

Transmission Investment – Ponce MiniGrid

115 kV Transmission	Ponce		
Technical Justification	# of Projects	Million \$	
Aging Infrastructure Replacement-MG	7	23	
Existing Infrastructure Hardening for			
Reliability - MG	0	0	
Interconnection of Critical Loads	4	68	
Interconnection of Minigrids	0	0	
Minigrid Backbone Extensions to			
Create High Reliability/Resiliency	0	0	
Minigrid Main Backbone	7	207	
Grand Total	18	298	

115 kV Transmission	Ponce			
Project Type	# of Projects	Million \$		
Line Hardening/Reconstruction	3	55		
New Submarine Cable	0	0		
New Substation/Switchyard	0	0		
New Transmission Line	0	0		
New Underground Construction	0	0		
Switchyard Hardening/Reconstruction	15	243		
Grand Total	18	298		

38 kV Transmission	Ponce			
Technical Justification	# of Projects	Million \$		
Existing Infrastructure Hardening for				
Reliability - MG	0	0		
Interconnection of Critical Loads	58	760		
Interconnection of Minigrids	1	14		
Minigrid Backbone Extensions to				
Create High Reliability/Resiliency	0	0		
Minigrid Main Backbone	0	0		
Grand Total	59	773		

38 kV Transmission	Por	nce
Project Type	# of Projects	Million \$
Line Hardening/Reconstruction	1	2
New Substation/Switchyard	0	0
New Transmission Line	0	0
New Underground Construction	31	413
Switchyard Hardening/Reconstruction	27	358
Grand Total	59	773

Transmission Steady State Analysis

Restricted

WWW.Siemens.com

Transmission Steady State Analysis

Introduction

- Identify constraints, reliability issues, and critical contingencies based on an integrated system
- Considering higher likelihood of implementation, a total of 10 power flow cases were assessed
- Generation portfolios from the LTCE plans
- Additional cases were analyzed based on similarity of resources
- Considered both Day and Night Peak, 2025 and 2028

	S1S2B	S4S2B	ESM	S3S2B	S5S1B	
2025	Night	Day & Night	Day & Night	Analyzed	Analyzed	
2028	Night	Day & Night	Day & Night	Analyzed	Analyzed	

 Present fully Integrated System, followed by Weakened System (assuming selected lines out) and Existing System (current system as is).

Assumptions

- Base case assumes all generation resources from LTCE plan and mapped to buses
- Include all transmission investment projects: new and upgrades
- System loads and generation are balanced: large thermal, small peaker, PV and storage, DG, CHP
- Capacitor banks adjusted to provide necessary reactive power support

Methodology

- Monitor all 38 kV and above facilities, for thermal and voltage violations
- N-0, system intact
- N-1 contingencies (NERC P1)
- N-2 Right-of-Way contingencies (NERC P7): Selected double circuit lines
- 100% of Rate A and B for normal and emergency (contingency) violations
- Bus voltage at 38 kV and above, 0.95 1.05 per unit for system intact and 0.9 1.1 per unit following a contingency

Generation Dispatch – S4S2B

CACOD Cooperio	2025			2028			
S4S2B Scenario	Capacity	Day	Night	Capacity	Day	Night	
Bayamon F Class	302	0	284	302	0	285	
Costa Sur F Class	302	0	302	302	0	302	
San Juan Rep 1&2	400	0	400	400	0	400	
AES	454	322	454	0	0	0	
New Solar	2220	2220	0	2820	2643	0	
Existing Renewable	252.2	252.2	0	252.2	252.2	0	
DG	428	428	0	533	533	0	
СНР	162	162	162	162	162	162	
Daguao Gas	0	0	0	93	0	29	
Total Generation		3384.2	1602		3590.2	1178	
Load		2295	2377		2161	2247	
Losses		32	24		29	21	
Load + Losses		2327	2401		2190	2268	
Storage	1320	1058	797	1400	1400	1090	
Gen - Load		0	0		0	0	
Reserve			541			391	

- Reserve is calculated to accommodate a continuous supply in case of the biggest single unit is tripped out of service.
- For example: In night cases, the biggest unit is the new 302 MW CC F Class, therefore, at least 302 MW is assured from other resources
- Storage is charging (load) during the day and discharging (generation) at night

Generation Dispatch – ESM

FCM Cooperio	2025			2028			
ESM Scenario	Capacity	Day	Night	Capacity	Day	Night	
Bayamon F Class	302	0	284	302	0	285	
Yabucoa F Class	302	0	302	302	0	302	
San Juan Rep 1&2	400	0	400	200	0	200	
EcoEléctrica	507	0	507	507	0	507	
AES	454	322	454	0	0	0	
New Solar	2400	2079	0	2580	2362	0	
Existing Renewable	252.2	252.2	0	252.2	252.2	0	
DG	428	428	0	533	533	0	
СНР	162	162	162	162	162	162	
Daguao Gas	0	0	0	116	0	29	
Total Generation		3243.2	2109		3309.3	1485	
Load		2295	2377		2161	2247	
Losses		30	28		28	23	
Load + Losses		2325	2405		2189	2270	
Storage	920	920	295	1120	1120	782	
Gen - Load		0	0		0	0	
Reserve			643			442	

Thermal and BESS Resource Comparison

	Large & Medium CCGTs and Peakers			Storage		
CASE ID	F - Class Palo Seco 2025	F - Class Costa Sur 2025	San Juan 5&6 Conversion	Peakers 2025 (MW)	BESS 2025 (MW)	BESS 2028 (MW)
S1S2B	-	Eco instead	\checkmark	504	1,280	1,280
S3S2B	-	\checkmark	\checkmark	348	1,400	1,920
S4S2B	\checkmark	\checkmark	\checkmark	371	1,320	1,400
S5S1B	_	369 MW (2025&2028)	\checkmark	371	1,200	1,200
ESM	\checkmark	\checkmark	\checkmark	421	920	1,120

- S1S2B is similar to S4S2B as the only major difference is the absence of the large CC F Class in Palo Seco and F Class unit in Costa Sur replaced by EcoEléctrica, supplemented by additional peakers
- S3S2B and S5S1B are also similar to S4S2B or S1S2B where the F class in Palo Seco is not in the mix and complimented by thermal peakers and additional BESS resources

Observations

- The loss of a 38 kV line line resulted in a radial feed to a 20.33 MVA of load causing a slight overload on the other 38 kV line. This is a local issue not really related to the IRP.
- Recommend to upgrade the affected line to higher rating based on preliminary observation
- No other thermal violations above 38kV were reported for all 10 power flow cases
- Low voltage violations at 38kV were reported in Arecibo near Dos Bocas area due to the loss of one of the 115 kV lines. This is also local in nature.

Summary

- As a complement of the MiniGrid analysis which evaluate the system conditions under 8 separated MiniGrids, Weakened system analysis evaluates the conditions in which the system may be lesser in strength, but still integrated
- The certain critical lines assumed to be out of service for an extended period of time after a major event, mostly in east and south
- AES is disconnected as a result
- S4S2B and ESM Night Peak cases assessed for both 2025 and 2028
- No thermal or voltage violations were reported under this assessment.

Transmission Steady State Analysis – *Existing System*

Summary

- In addition to the fully Integrated System, Weakened System and MiniGrid System analysis, the Existing System representing the PREPA transmission network currently as is also assessed
- Assuming system unreinforced and no proposed transmission investment
- The purpose is to mainly identify any constraints and reinforcements required to relieve constraints as a result of two major resources: 302 MW each at Yabucoa and Mayaguez
- Benchmark (without the units) and Study (with the units) cases were assessed
- In Study case the new units were dispatched to full capacity, and the generation in the rest of PREPA system was adjusted to maintain the same level
- Adding a CCGT at Mayaguez did not result in any violations.
- The unit in Yabucoa would result in overloads under certain contingencies.
- This overload will not occur under the ranforced system for Resiliency. Also PREPA has plan in place in the area that could address this issue.

Restricted

WWW.Siemens.com