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Bureau, LUMA submitted to this Energy Bureau a revised SOP Section 3.3 and Figure 3-1 via 

Motion in Compliance with Order Submitting Additional Information and Supplement Responses 

to Questions Posed in Technical Conference and Submitting Clarifications filed with this Energy 

Bureau on May 14, 2021, and a revised version of the SOPs via Motion in Compliance with Order 
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Submitting Revised System Operation Principles, Phase I Draft Procedures and Additional 

Information, filed with this Energy Bureau on May 19, 2021. 

3.  On May 31, 2021, this Energy Bureau issued a Resolution and Order approving the 

SOPs subject to LUMA’s compliance with several conditions listed in paragraphs 1 to 5 of Section 

IV therein (“May 31st Resolution and Order”).  In what is relevant to this submission, this Energy 

Bureau directed LUMA to file within ninety (90) days “final versions of its Load Forecasting 

Procedures to include a description of power meter load data, load management, load forecast, and 

DER adoption models and weather normalization and peak allocation,” (“Condition No. 3). 

4.  On August 25, 2021, this Energy Bureau issued a Resolution and Order (the 

“August 25th Resolution and Order”) that included, among other matters, the following regarding 

the submittal of load forecasting procedures 

The Energy Bureau does not intend for LUMA to determine specific load 
projections for the system. Rather, Condition No. 3 requires LUMA to submit 
load forecasting procedures that set out the methodologies and the inputs needed 
to determine these projections when performing load forecasts. The load 
forecasting methodology is a core tool of any utility. However, utilities use 
different approaches when forecasting load. The Energy Bureau is seeking to 
examine LUMA’s approach to projecting load. 

August 25th Resolution and Order on page 5. 

5. On September 13, 2021, LUMA submitted a motion entitled Motion in Attention 

to Resolution and Order of August 25, 2021 and Request for an Agenda for the Virtual Technical 

Conference Scheduled for September 17, 2021 (“September 13th Motion”).  In Section 3.0 of 

Exhibit 1 to the September 13th Motion, LUMA addressed the Energy Bureau’s request regarding 

LUMA’s load forecasting procedures. It explained that LUMA would implement a phased 

process to improve load forecasting and research functions, based on recommendations from its 

consultant Guidehouse Inc. (“Guidehouse”). At pages 5 through 6 of Exhibit 1, LUMA proposed 
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a timeline for said improvement process that included in Phase 2, a review of current and future 

methodologies. 

6.  LUMA hereby submits a document prepared by Guidehouse entitled “Regulatory 

Long-Term Load Forecast Review: Current State Assessment & Future Methods 

Recommendations” (“Long-Term Forecast Review”) as Exhibit 1 to this Motion.  The Long-

Term Forecast Review involves the work done to fulfill Phase 2 of LUMA’s approach to 

improving load forecasting processes. 

WHEREFORE, LUMA respectfully requests that the Energy Bureau take notice of the 

aforementioned and accepts the Long-Term Forecast Review submitted as Exhibit 1 to this Motion. 

RESPECTFULLY SUBMITTED. 

In San Juan, Puerto Rico, this 30 day of June, 2022. 

I hereby certify that I filed this motion using the electronic filing system of this Energy 

Bureau and that I will send an electronic copy of this motion to the attorneys for PREPA, Joannely 

Marrero-Cruz, jmarrero@diazvaz.law, and Katiuska Bolaños-Lugo, kbolanos@diazvaz.law.

DLA Piper (Puerto Rico) LLC 

500 Calle de la Tanca, Suite 401 

San Juan, PR 00901-1969 

Tel. 787-945-9132 
Fax 939-697-6102 

/s/ Yahaira De la Rosa Algarín 
Yahaira De la Rosa Algarín 

RUA NÚM. 18,061 
yahaira.delarosa@us.dlapiper.com 

mailto:kbolanos@diazvaz.law
mailto:yahaira.delarosa@us.dlapiper.com
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Exhibit 1 



Regulatory Long-Term Load Forecast Review 

Current State Assessment & Future Methods Recommendations 

Prepared for: 

  
 
 

Submitted by: 

Hector Artze, Partner 
 
Principal Contributing Authors 
Ken Seiden, Partner 
Peter Steele-Mosey, Associate Director 
Abby Mayer, Managing Consultant 
 
Guidehouse Inc. 
 
Reference No.: 217196 
2022-06-29 

guidehouse.com 

This deliverable was prepared by Guidehouse Inc. for the sole use and benefit of, and pursuant to a client relationship exclusively with LUMA 
(“Client”). The work presented in this deliverable represents Guidehouse’s professional judgement based on the information available at the 
time this report was prepared. Guidehouse is not responsible for a third party’s use of, or reliance upon, the deliverable, nor any decisions 
based on the report. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their 
reliance on the report, or the data, information, findings and opinions contained in the report. 
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1. Introduction 

In the fall of 2021, LUMA engaged Guidehouse to support the development and improvement of 
its long-term load forecasting process. The Annual Load Forecast is the long-term (20+ year) 
forecast used for projecting revenues, setting rates and rate-riders and is a key input to its 
Integrated Resource Plan. 
 
The Annual Load Forecast is output once per year, with relatively near-term updates (the 
Quarterly Updates) performed three times per year to serve as inputs for the calculation of the 
Fuel Clause Adjustment (FCA) and Purchased Power Clause Adjustment (PPCA) rate riders. 
The load forecast is performed by the Load Forecasting and Research (LFR) team that is a part 
of LUMA’s Regulatory department. 
 
LUMA has commenced on an improvement process to its load forecasting procedures to deliver 
a more accurate and useful forecast of monthly class-level consumption, and annual system 
peak demand. This improvement process will also allow it to provide a Long-Term Load 
Forecasting Procedure to support the System Operation Principles as specified in Resolution 
and Order No. NEPR-MI-2021-0001. 
 
LUMA has identified to PREB within LUMA’s September 13, 2021 filing and September 17, 
2021 Technical Conference, there are five phases of this work. The descriptions below are 
based on the phase details in the September 13, 2021 submission, updated to reflect the latest 
developments in LUMA’s improvement planning.  
 
1. Phase 1 – Internal Governance and Organizational Design – In progress. Formed with 

key internal stakeholders, providing a governance body (referred to below as the 
“Governance Committee” (GC)) to initiate and provide input to ongoing development of Load 
Forecasting methodologies and practices and to ensure internal buy-in across the 
organization. LUMA has indicated in its submission to PREB that this phase has already 
commenced with a number of initial governance meetings having taken place and additional 
periodic future meetings have been scheduled. 
 

2. Phase 2 – Review Current and Future Methodologies – Complete by June 2022. This 
phase involves both a detailed “As-Is” process documentation that identifies current data 
collection and forecasting processes and methodologies and a “To Be” process design that 
includes determination of future forecasting needs including methodologies and data 
required to meet those future forecasting needs. LUMA has indicated in its submission to 
PREB that this phase has already commenced and is anticipated to take until the end of 
Fiscal Year 2022 (June 30, 2022).  
 

3. Phase 3 – Establish Data Needs – Complete by December 2022 Identify data that are 
required to meet the future forecasting needs determined in Phase 2 and establish plans 
and timelines to start collecting the needed data. 
 

4. Phase 4: Process Design. Completion date to be determined during Phase 2. Short-term 
and long-term initiatives, providing impacts to current processes, where possible using 
existing systems and data and developing long-term aligned processes across internal 
LUMA stakeholder needs, using new systems and processes. Long-term initiatives include 
establishing load forecasting and research capabilities and dedicated functions within the 
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organization. 
 

5. Phase 5: Build Capabilities. Completion date to be determined during Phase 2. This may 
involve establishing and training for a centralized load forecasting function (across or within 
teams) that will be tasked with developing long-term load forecasts and enable the practice 
of load study or research. 

 
Guidehouse’s assistance on this engagement has been supporting LUMA with the first three of 
these phases. Guidehouse has, to date, provided LUMA with assistance in developing the GC 
charter, and a formal governance structure for reviewing and approving improvement activities 
undertaken by Guidehouse on LUMA’s behalf. 

This report fulfills the requirements of Phase 2: 

• Review the current state approach to long-term forecasting employed by the LFR team,  

• Contextualize these activities within the wider landscape of load forecasting within LUMA 

• Identify a set of future methods that the LFR team should work to adopt for the Annual 
Load Forecast in the longer term; and, 

• Map out a high-level transition roadmap from the current state to the recommended 
future methods. 

This report is divided into the following sections: 

1. Introduction. Introduces the report and articulates its structure. 
 

2. Load Forecasting at LUMA. Provides the “As-Is” summary overview of the different 
load forecasting teams, their outputs, and the use-cases for those forecasts at LUMA.  
 

3. Long-Term Regulatory Forecast: Current State . Describes in greater detail the 
current-state approach to long-term forecasting employed by the LFR team.   
 

4. Long-Term Regulatory Forecast: Future Methods. Lays out Guidehouse’s 
recommendations for a set of Forecast Principles that LUMA has adopted to guide its 
ongoing forecast development and describes a longer-term end-state of forecasting 
capabilities aligned with those Principles that LUMA will target implementing within 
approximately 7 - 10 years. This section provides the “To Be” long-term load forecasting 
process design. 
 

5. Future Methods: Transition Plan Road Map. Provides a link between the current state 
and the recommended future methods. The purpose of this road map is to support the 
development and execution of more detailed workplans and evolving approaches toward 
the recommended future methods – the longer-term end-state.  
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Appendix A. These five sections of the main body of the 
report are followed by one Appendix: Appendix  , 



Future Methods – Additional Detail & Examples. This appendix expands on the content of 
Section 4.  

In this report, the term “long-term forecast” refers, unless otherwise explicitly stated, to the 20+ 
year Annual Forecast of billed energy consumption by customer class and coincident peak 
demand. A new version of this forecast projection is developed for the 20+ year forecast period 
once per year, using the process described in Section 3.2 of Section 3. 
 
The Quarterly Updates (a set of updates providing a monthly forecast that is derived from the 
Annual Forecast) are sometimes referred to by the LFR team as the “short-term” forecast.1 To 
avoid confusion with the very short-term forecasts (e.g., day-ahead) produced by System 
Operations, Guidehouse generally refers to these outputs as the Quarterly Updates, and not as 
a “short-term forecast”. The Quarterly Update outputs new forecast values for the remainder of 
the fiscal year using the process described in Section 3.1 of Section 3, but does not update 
forecast values for subsequent fiscal years.  
 

 
1 The Quarterly Updates are so called because they are produced by the LFR team on a quarterly basis. Each of 
these updates provides a forecast of monthly values. 
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2. Load Forecasting at LUMA 

This section provides the “As-Is” summary overview different load forecasting teams, their 
outputs, and their internal use-cases at LUMA. The purpose of this section is to identify the load 
forecasting context within which the LFR team operates at LUMA. 
 
In December of 2021, Guidehouse staff traveled to LUMA’s headquarters and met with internal 
personnel from the following groups or departments: 
 

• Regulatory – Load Forecasting and Research 

• Regulatory – Grid Modernization 

• Regulatory – Programs & Performance 

• Regulatory – Supply Side Contract Administration 

• Utility Transformation – Business Transformation 

• Utility Transformation – System Operations 

• Engineering & Asset Management  – Substation and Feeder Level Planning 

• Customer Experience – Customer Billing 

• Finance 

 
Over the course of these interviews, Guidehouse identified a list of existing and forthcoming 
load forecasts produced by members of the groups above and tied these to the existing and 
projected stakeholder use-cases for those forecasts. Guidehouse used this information to 
develop a high-level summary of forecast producers and users and a high-level profile of each 
forecast’s characteristics (e.g., inputs, frequency). This summary was first presented to the GC 
at its February 2022 meeting and has been updated based on subsequent discussions with 
LUMA personnel for inclusion in this report that occurred between the original interviews 
(December 2021) and the end of April 2022. 
 
In reviewing the forecasts described below, it is important to remember that different teams at 
LUMA produce forecasts for different purposes. 
 
Engineering & Asset Management for example, projects non-coincident peak demand by asset 
in order ensure reliable service in emergency and extreme conditions (e.g., 90th percentile 
weather conditions). Regulatory, in contrast, projects class-level energy consumption and 
coincident peak demand under expected median (50th percentile) conditions in order to project 
expected revenues, and allocate system costs for the purposes of rate-setting. It would be 
neither desirable nor prudent for these forecast outputs to match each other. 
 
All teams at LUMA undertaking load forecasting continue to review the data available to support 
the development of load forecasting activities for accuracy and completeness. As LUMA load 
forecasting teams come to better understand the constraints imposed by the data available, 
forecasting approaches, and the anticipated improvements to be applied to them, will continue 
to evolve. 
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2.1 Forecast Producers, Users, and Use-Cases 

Three LUMA teams currently produce forecasts of electricity demand or production at LUMA, 
and a fourth is working to develop one. The four teams and the forecasts they produce are 
identified in Figure 1 below.  
 

Figure 1. Forecast Producers and Their Outputs 

 

Source: Guidehouse & LUMA 

The “20+ Year” forecast produced by the LFR team and identified in the figure above is also 
referred to in this document as the “long-term” forecast and, more formally, the Annual Forecast. 
Unless otherwise explicitly noted, all references to the long-term forecast or the Annual Forecast 
indicate this 20+ year forecast of customer class billed consumption and system-level peak 
demand. 

The Utility Transformation and Engineering & Asset Management departments are themselves 
the primary users of the forecasts they produce. Engineering & Asset Management, for 
example, uses their load forecast2 to determine any electric system upgrades necessary to 
accommodate future loads, Electric Vehicle (EVs), maintain system reliability and for planning 
infrastructure requirements, load transfers. 

 
2 Note that the Engineering & Asset Management forecast is a projection of asset demand under extreme peak 
conditions – an estimate of system design criteria – rather than (as is the case for the LFR forecasts) an attempt to 
project average conditions and demand. 
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The Utility Transformation uses their forecast for planning outages (year-ahead forecast) and 
daily dispatch and load shed events. 

The LFR team’s forecasts, in contrast, are currently used by (or will be used by) several 
different “clients” both internal and external to LUMA. These use-cases are summarized in 
Table 1. 

Table 1. “As-Is” Current State Users of LFR Team’s Forecasts 

User(s) Forecast Used Use-Case 

Regulatory 
Annual Forecast and 

Quarterly Updates 

Regulatory teams use the first three months of the Annual 
Forecast and the subsequent Quarterly Updates to calculate 
the FCA and PPCA rate riders on a quarterly basis. 

These forecast values are also inputs to its PROMOD 
software modeling, which in turn outputs the estimated 
average fuel cost over that period. These outputs are used to 
update the riders. 

Regulatory 

Finance 
Annual Forecast 

Regulatory leads the development of a revenue forecast 
based on the Annual Forecast (LFR 20+ Year), working 
closely with Finance to align on assumptions and methods. 

Once top-line revenue forecast is identified, Finance builds a 
bottom-up budget, calibrated to allocated top-line revenue 
forecast. 

[FUTURE USER] 

Utility Transformation  
Annual Forecast 

This team is also responsible for providing load modifiers for 
forecast adjustment (EVs, Distribution Energy Resources 
(DERs), Demand Side Management (DSM)) and reviews the 
base3 Annual Forecast as part of that work 

The Energy Bureau is currently procuring a baseline study 
and potential study which will inform load modifiers in the 
future 

[FUTURE USER] 

Regulatory 
Annual Forecast 

The Integrated Resource Plan (IRP) team will use the LFR 
team’s long-term Annual Forecast as an input for the 
development of the integrated resource plan forecast. 

[EXTERNAL USER] 

Financial Oversight and 
Management Board of Puerto 
Rico (FOMB) 

Annual Forecast 
The FOMB uses the Annual Forecast to forecast for the 
Fiscal Plans restructured debt payments for the next 40 
years. 

 Source: Guidehouse & LUMA 

Siemens has historically been responsible for the development of LUMA’s IRP and used the 
Annual Forecast as an input for the long-term fuel and purchase power costs. This responsibility 
will remain with Siemens until another IRP is approved by the Energy Bureau.  

Additionally, in conversations with the various teams as part of Guidehouse’s on-site visit, the 
representative from the Customer Experience – Customer Billing indicated an interest in 
exploring the use of the Annual Forecast in its workflows, though no firm plans are in place at 
present to do so. 

 
3 The “base” Annual Forecast is what is forecast by the LFR team before applying adjustments for load modifiers 
without significant historical precedent (DERs, EVs, and DSM). See Section 3 for more details. 
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2.2 Forecast Profiles by Producer 

The section above identifies and provides a summary of those teams at LUMA that produce  
and use load forecasts, and what they are used for. In this section, a profile of each load 
forecast is provided, identifying each forecast’s primary data providers (sources), level of 
granularity, core approach, key inputs, and frequency of updates. Table 2 provides a high-level 
profile of the characteristics of the load forecasts prepared by the Regulatory: the LFR team, 
and the IRP team. Additional details related to the LFR team forecasts are contained in Section 
3. 

The LFR team forecasts are described in their current state here and are reflective of the 
approach used in the most recent forecast development cycle.  
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Table 2. “As-Is” Current State Regulatory Forecast Teams’ Forecasts 

 Load Forecasting & Research (LFR) IRP 

Forecast Quarterly Updates Annual Forecast (20+ Year) 20+ Year (under development, 
details below subject to change) 

Data Sources System Operations, 
Finance, Customer 
Experience (Billing), 
LFR 

System Operations, Finance, 
Customer Experience (Billing), 
FOMB, Siemens, National 
Oceanic and Atmospheric 
Administration (NOAA)4 

LFR, Engineering & Asset 
Management, others TBD5 

Granularity Monthly, by customer 
class 

Monthly (base only) and annual 
(adjusted by load modifiers: EVs, 
DERs, etc.), by customer class 
(where applicable) 

Hourly (8,760) energy forecast by 
region, and customer class. 
Hourly peak demand by region, 
and, subject to availability of data, 
customer class. TBD.  

Core 
Approach 

Trend analysis of 
generation output and 
conversion to 
consumption with 
historic efficiency and 
allocation factors. 

Application of forecast inputs 
(weather, Gross National Product 
(GNP), etc.) to 2018-estimated 
regression parameters adjusted 
to reflect incremental growth of 
load modifiers (EVs, Distributed 
Generation (DG), etc.) 

A range of forecasts will be 
developed. One of the forecasts 
will be based on the application of 
load profiles and asset-level data 
to updated LFR Annual Forecast 
to deliver disaggregated, 
probabilistic forecast. TBD 

Key Inputs Generation data, 
monthly billed 
consumption by class, 
previously developed 
forecast values 

Generation data, monthly billed 
consumption by class, forecast 
macroeconomic inputs 
(population, GNP, manufacturing 
employment), estimated 
regression parameters, LFR-
developed forecast of Cooling 
Degree Days (CDD)6 

LFR forecast, historic hourly and 
sub-hourly substation data7, 
forecast macroeconomic inputs 

Updates Three times per year, 
prior to the second, 
third, and fourth 
quarter of the fiscal 
year. 

Once per year Once per year (TBD) 

 Source: Guidehouse & LUMA 

The IRP team forecast, in contrast, is still in development and is described here prospectively. 
As the different teams involved, including the IRP consultant, in the development of this forecast 
work with the data and resources available, the specifics of this approach are likely to evolve, 
and the description noted here should be understood to be preliminary and subject to change. 
For example, some uncertainty exists as to how much the LFR Annual Forecast will be used as 
an input to the IRP and how much work developed for the IRP will be used as an input to the 
LFR Annual Forecast, going forward. 

 
4 Monthly cooling degree days are obtained from the National Oceanic and Atmospheric Administration (NOAA)’s 
National Weather Service: 

NOAA, National Weather Service, Climate – NOWData – San Juan, PR, Accessed June 2022. 

https://www.weather.gov/wrh/Climate?wfo=sju  
5 “To be determined” (TBD). Currently under development and details subject to change. 
6 Cooling degree days (CDD) 
7 LUMA personnel are still conducting a quality review of the available substation data and have not yet determined to 
what degree it may be appropriate to use in the development of forward-looking analyses. 

https://www.weather.gov/wrh/Climate?wfo=sju
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Table 3 contains the characteristics of the load forecasts prepared by the Systems Operations 
team. As noted in this table there are several internal activities ongoing to further develop the 
forecasting capabilities of this team (e.g., procurement of an Energy Management System 
(EMS), re-alignment of 90-day forecast, etc.) 

Table 3. “As-Is” Current State Systems Operations Forecasts 

 System Operations 

Forecast Year-Ahead 7-Day 24-Hour Ahead 

Data 
Sources 

Supervisory Control and Data Acquisition (SCADA)89 

Granularity Daily, system-level Daily, system-level Hourly, system-level 

Core 
Approach 

Average of prior two 
years, by day of year, 
informed by analyst 
judgement 

Trend analysis with weather adjustments as 
warranted, and analyst judgement. 

Key Inputs Historical daily peak 
generation output 

Recent historical hourly output data, historical 
peak demand values, and weather 

Updates Once per calendar year Daily – rolling 7-day 
outlook period 

Daily 

 Source: Guidehouse & LUMA 

Table 4 provides the characteristics of the load forecast currently under development by the Sub 
& Feeder Planning team 

 
 
 
9 Supervisory Control and Data Acquisition (SCADA, legacy and current source). An Energy Management System 
(EMS) is being procured to support this work. 
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Table 4. “As-Is” Current State Engineering & Asset Management Forecast 

 Sub & Feeder Level Planning 

Forecast 10-Year Forecast (under development, 
details below subject to change as 
available data are reviewed for quality) 

Data 
Sources 

Pi Server software/SCADA10, NOAA, 
LUMA weather stations11 

Granularity Annual peak demand, to the extent 
possible, by upstream (sub-station & 
transmission) asset and potentially by 
feeder. 

Core 
Approach 

Connection requests (1 – 3 years), trend 
analysis, weather normalization, and 
engineering judgement.  

Key Inputs Historic feeder and upstream asset 
annual peak demands and weather data 
where available 

Updates Annual by calendar year 

 Source: Guidehouse & LUMA 

 
10 Significant limitations exist in the data available and under review, most significantly only a single phase (“B” 
phase) substation demand is metered suggesting significant remedial action and strong assumptions required before 
these data can be used to forecast asset-level demand. 
11 LUMA weather station data are still being assessed for quality, but preliminary investigations indicate that many 
LUMA (legacy PREPA) weather stations are not functioning and that significant gaps exist in the data recorded by 
those stations that are still functioning. 
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3. Long-Term Regulatory Forecast: Current State  

This Section summarizes the current state (“As-Is”) approach used by the LFR team to project 
the Annual Forecast and the Quarterly Updates. These are sometimes referred to internally by 
the LFR team as the “medium and long-term forecast” and the “short-term” forecast 
(respectively).  
 
The Quarterly Updates provide input values for the quarterly updates to the FCA and PPCA rate 
riders. The Quarterly Updates are also used internally by the Finance department and for cash-
flow reporting to the FOMB for Puerto Rico. The Quarterly Update is completed in the month 
preceding each fiscal year quarter. 
 
The Annual Forecast provides input values for setting the Initial Budget (LUMA’s budget for the 
subsequent fiscal year), and for the PREPA fiscal plan. Both the “base” forecast (without the 
application of any load modifiers) and the final adjusted Annual Forecast (the base forecast, 
adjusted for load modifiers such as EVs, distributed generation, etc.) are provided to Siemens 
and to the Supply Side Contract Administration (SSCA) team. The SSCA team applies these 
outputs (and fuel and plant availability projections provided by PREPA and the Independent 
Power Producers (IPPs)) to its PROMOD software model to project fuel needs for the next fiscal 
year. Siemens uses these values to run the approved IRP plan with the Siemens developed 
model and to project fleet dispatch and fuel costs for the subsequent 19 years (following the 
first-year projection delivered by the SSCA team). The Annual Forecast is typically completed 
by April or May in each year. 

Each of the subsequent two sections of this section summarize the modeling and data 
processing currently applied by the LFR team to estimate these forecasts. The content has 
been developed from (1) a series of in-person and virtual interviews conducted by the 
Guidehouse team, and (2) a detailed review of the LFR team’s Excel workbooks that generate 
the forecasts. In addition to the information provided in this section, Guidehouse has supported 
the drafting of the “Load Forecasting Process” procedural document that describe the process in 
greater detail than provided here.  

The forecasts developed by the LFR team are all in relation to the fiscal, and not the calendar 
year. LUMA’s fiscal year runs from the beginning of July until the end of June and is divided into 
four quarters. The periods covered by each of these forecasts are summarized in Figure 2. 

Figure 2. LUMA “As-Is” Long-Term Annual Forecast and Quarterly Updates Schedule 

 

Source: Guidehouse & LUMA LFR team 
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3.1 Quarterly Updates 

The Quarterly Updates deliver a forecast by month of: 
 

• Consumption by customer class. 

• Total generation requirements. 

• Total system peak demand. 

These are provided for the remainder of the fiscal year (i.e., the Quarterly Updates do not 
impact the forecast annual values for subsequent fiscal years). Figure 3 contains high-level 
summary of the key steps in the process used to estimate the three required outputs, 
represented as green boxes in the process flow. A description of each step (identified by the 
letters A through G in Figure 3) is also provided. 
 

Figure 3. Summary of Current State Quarterly Updates Process 

 

Source: Guidehouse & LUMA LFR team 

The Quarterly Updates, if required, are output three times a year, in the month immediately prior 
to the start of the subsequent Fiscal Quarter (FQ): September (prior to FQ2), December (prior to 
FQ3), and March (prior to FQ4). No quarterly update is performed for FQ1 – the monthly 
forecast values for this period are drawn directly from the outputs of the Annual Forecast that 
begins July 1 (the start of FQ1). 
 
The seven steps for generating the Quarterly Update are: 
 

A. Current Month Generation. A key decision in the process flow requires a comparison 
of fiscal year-to-date observed/actual monthly energy generation values and forecast monthly 
generation values. The purpose of this step is to scale up generation values in the current 
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month (the month in which the update is performed) to ensure a complete set of monthly 
“actuals” for this comparison. 

B. Decision: Quarterly Update Approach. The Quarterly Update is either drawn directly 
from the most recent monthly output of the Annual Forecast or estimated using observed 
generation data.  

• No update to Annual Forecast monthly projected generation values is required if two 
conditions hold: a) the absolute forecast error for the year-to-date projected generation 
requirements is less than 3% and b) no updates were performed in earlier FQs of the 
same year. 

• If both conditions are true, projected monthly values from the Annual Forecast are used. 

• If one or both conditions are not true, the LFR team update its projection of monthly 
consumption by class, generation output, and system peak demand according to the 
steps below. 

C. Estimate Remaining-Year Based Growth Rates. When an update is required, it is 
estimated by projecting annual growth in generation output, subtracting year-to-date generation, 
and allocating the difference across the remaining months of the year. Two sets of growth rates 
are considered as possible drivers for the Quarterly Update: the “remaining-year” based growth 
rates (described in the bullets immediately below), and the “elapsed-year” based growth rates 
(described in Step D). The details of this step are illustrated in Figure 4 below. 

• The first set of growth rates considered for updating the forecast of monthly generation 
are the “remaining-year” based growth rates. 

• The remaining-year growth rates are the historical Compound Annual Growth Rates 
(CAGR) and Annual Average Growth Rates (AAGR) observed historically for the period 
remaining in the current year over five different windows of time: the most recent year’s 
growth, the most recent two years’ growth, etc. 

• This delivers 10 possible annual growth rates as contenders for use in projecting the 
Quarterly Update.  
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Figure 4. Step C Process Detail 

 

Source: Guidehouse & LUMA LFR team 

 

D. Estimate Elapsed-Year Based Growth Rates. The second set of growth rates 
considered for use in updating the forecast of remaining year generation output (and 
consequently customer billed consumption and total peak demand) is developed using the 
“elapsed-year” approach. The details of this process are illustrated in Figure 5, below. 

• Historical average daily generation for the elapsed year months in previous years is 
compared to average daily generation across the entire year in previous years. 

• The ratio of these two values is applied to average daily generation for the period 
elapsed in the current year to deliver a projected annual generation value and calculate 
a growth rate. 

• Six growth rates are calculated in this way, each based on a different look-back window: 
one averaging daily generation across three years, another across four years, etc. 
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Figure 5. Step D Process Detail 

 

E. Select Growth Rate and Forecast Current Year Generation. The 16 growth rates 
generated in steps C and D are compared to the total growth in generation output of all 
complete months in the fiscal year-to-date compared to the same months in the prior fiscal year. 

• Of the 16 growth rates, that which is closest to, but less than, this observed growth rate 
(i.e., the growth in generation output of all complete months in the fiscal year-to-date 
compared to the same months in the prior fiscal year) is selected. 

• The selected growth rate is applied to the previous fiscal year’s generation output to 
develop an updated forecast of generation output for the entire current fiscal year. 
 

F. Project Remaining-Year Consumption by Month.  

• The historical contribution of each class’s consumption to total billed consumption is 
used to allocate generation output by class, and a historical efficiency factor (capturing 
losses between the generator and the meter) is applied to convert this to forecast annual 
consumption value for the entire fiscal year. 

• Forecast total year consumption by class is subtracted from observed billed 
consumption by class in the fiscal year-to-date to deliver the total forecast customer 
consumption for the remaining months of the year, which is then allocated across the 
months based on the historical distribution of class-level consumption by month. 

• This delivers the Quarterly Update forecast of remaining-year customer class 
consumption by month. 
 

G. Project Remaining-Year Generation and Peak Demand.  

• Total observed generation output in the year-to-date is subtracted from the updated 
forecast total generation for the current fiscal year (estimated in step E) to deliver 
forecast generation output for the remainder of the fiscal year. 
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• Monthly allocation factors estimated in EViews are used to spread the remaining-year 
forecast generation output by month. This delivers the Quarterly Update forecast of 
remaining-year generation by month. 

• Month-specific load factors are applied to the updated monthly generation output 
forecast. This delivers the Quarterly Update forecast of system peak demand by month. 

3.2 Annual Forecast 

The Annual Forecast is performed once per year, and provides five forecast outputs: 

1. Base12 monthly energy consumption, by customer class. 
2. Base annual energy consumption, by customer class 
3. Base annual peak demand, by class, and at the system level. 
4. Adjusted (for the incremental effects of the load modifiers) annual energy consumption, 

by customer class 
5. Adjusted annual peak demand, by class, and at the system level 

Figure 6, illustrates the key steps in the process used to estimate the required outputs, 
represented as green boxes in the process flow. A description of each step (identified by the 
letters A through D in Figure 6 is provided below. 

Figure 6. Current State Annual Forecast Process 

 

Source: Guidehouse & LUMA LFR team 

 
12 The “base” forecast is the forecast of consumption prior to the application of load modifiers that adjust forecast 
consumption for forecast incremental: EV consumption, Distributed Generation (DG) production, cogeneration 
Combined Heat and Power (CHP) production, and Energy Efficiency (EE) or Demand Side Management (DSM) 
energy savings.   
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A. Base Annual Energy Forecast.  

• CDD are forecasted by applying a growth rate13 to the most recent observed annual CDD 
value.  

• For residential, commercial and industrial classes, forecast macroeconomic variables (the 
“macros”) provided by the Puerto Rico Fiscal Agency and Financial Advisory and approved 
by the FOMB, calendar variables and forecast CDD developed by the Load Forecasting and 
Research team are applied to regression parameters provided by Siemens, last estimated in 
2018. 

• This delivers a forecast monthly consumption series for the three customer classes. These 
levels are differenced to transform the forecast consumption into forecast growth (i.e., the 
value in month t+1 is subtracted from the value in month t). 

• This series of differences is applied to the most recently observed value do deliver the base 
(i.e., not reflecting the impacts of incremental future EV consumption, Energy Efficiency 
(EE)/DSM, DG and Combined Heat and Power (CHP) production) monthly energy forecast. 

• The monthly base level forecast by customer class is aggregated by fiscal year to deliver the 
base annual energy forecast for residential, commercial, and industrial customers. 

• For Public Lighting, Agriculture, and Other Authorities, averages of previously observed 
annual consumption values are used as forecast values. This delivers the base annual 
energy forecast for these classes. 

B. Prepare Load Modifier Forecast. In this step forecast some of the load modifiers (EVs, DG, 
and CHP) are processed such that adjustments are applied based on incremental growth in the 
given load modifier. This is to ensure that the impacts of load modifier adoption trends 
embedded in the historical observed are not double-counted in the forecast period.  

C. Adjust Base Forecast and Forecast Adjusted Peak Demand. 

• The load modifiers are applied to the base forecast of annual consumption by class. 

• This delivers the adjusted annual energy consumption forecast by customer class. 

• Allocate annual class-level consumption by tariff/rate-class based on the historic 
consumption and apply load factors to estimate annual peak demand by rate class. 

• Sum peak demand across all tariff/rate-classes and customer classes and calculate the 
year-over-year growth rate. 

• Apply this growth rate to the most recently observed annual peak demand (derived from 
hourly generation data) to deliver the annual adjusted peak demand forecast. 

 

 
13 The CDD growth rate is derived from a 2016 paper projecting temperature changes for Puerto Rico (citation may 
continue on next page): 

Khalyani, Azad Henareh; Gould, William A.; Harmsen, Eric; Terando, Adam; Quinones, Maya; and Collazo, James A. 
Climate Change Implications for Tropical Islands: Interpolating and Interpreting Statistically Downscaled GCM 
Projections for Management and Planning, American Meteorological Society, February 2016 

https://www.researchgate.net/publication/293811670_Climate_PuertoRico_2016 

https://www.researchgate.net/publication/293811670_Climate_PuertoRico_2016


 
Regulatory Long-Term Load Forecast Review 

 

  

 Page 16 
 

 

 

D. Forecast Base Peak Demand 

• Allocate the annual class-level base forecast (i.e., not considering the impacts of the load 
modifiers) consumption as derived in Step A by tariff/rate-class based on the historic 
consumption and apply load factors to estimate annual peak demand by rate class. 

• Sum peak demand across all tariff/rate-classes and customer classes and calculate the 
year-over-year growth rate. 

• Apply this growth rate to the most recently observed annual peak demand (derived from 
hourly generation data) to deliver the annual base peak demand forecast. 
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4. Long-Term Regulatory Forecast: Future Methods  

In Section 3 the Guidehouse team documented the current state of LUMA’s long-term 
forecasting approach. The goal of this section is to identify – at a high level – the end-state to 
which this group should strive to achieve in seven to ten years.14 The section that follows this 
Future Methods section connects these two points in time – the current state and the future 
methods – and provides an initial, and high-level, conceptual “road-map” that LUMA should 
consider as it evolves from the current to its final state. 

Although the focus of Guidehouse’s review and recommendations is squarely on Regulatory 
LFR group’s long-term system-level forecast of energy consumption and peak demand (the 
Annual Forecast), Guidehouse notes that as increasingly granular metering data become 
available to long term forecasting and distribution planning groups, the practical distance 
between these two groups’ forecasting methods and requirements will shrink. 

Therefore, increased collaboration and information sharing between these groups – beginning 
now – will help to avoid potential inconsistencies in the inputs15, assumptions and methods used 
by the two planning functions. The need for increasing alignment of forecasting work across 
these functional areas is explicitly addressed in the sections that follow, though the primary 
perspective adopted is that related to the development of the regulatory long-term load forecast 
and the LFR team. 

The sections that follow address the LUMA LFR team’s future methods across two key areas: 

• Long-Term Forecast Principles. In this section we define the Principles approved and 
adopted by the LUMA Load Forecasting Governance Committee. The Principles are the 
rules to which the long-term forecast should adhere – that will guide the LUMA LFR 
team’s selection of future methods and approaches. The load forecast Principles may be 
thought of as a set of aspirational outcomes or goals – a “North Star” of longer-term 
improvements – that will guide forecast development.  
 

• Processes, Technology, People . This section describes a set of future methods, 
consistent with trends in the electricity distribution utility industry and in alignment with 
the Principles that could be in place within the next seven to ten years. The description 
of methods is at a relatively high level to avoid being too prescriptive. Guidehouse’s 
purpose here is to articulate a set of end-state methods that align with the Principles16 
and provide motivation for a long-term transition plan or road-map (see Section 5) while 
still providing the LFR team with the flexibility to develop approaches that maximize the 
value of the available data.  

 

 
14 Guidehouse believes that all of the future methods outlined in this section may be put in place in this time span, 
subject to the availability and provision of the funds and resources (human and material) to enable them. The 
Guidehouse team notes, however, that doing so is a significant undertaking with many interdependencies. As LUMA 
continues to assess the quality of the data available and collect new data, the planning horizon identified here should 
be periodically re-examined in the context of other on-going changes to the environment in which LUMA operates and 
revised if required.  
15 It has already been noted, but is worth re-stating here, that because the two processes project different outcomes – 
(distribution planning projects extreme scenarios, the Regulatory LFR team projects average scenarios) differences in 
input values and some assumptions between the two functions are inevitable. 
16 These methods may change and evolve as the Principles evolve and are approved by the GC. 
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To summarize, we have worked carefully to avoid being too prescriptive in our 
recommendations. Load forecasting is, at LUMA especially, but also in the utility industry more 
generally, a fluid and evolving practice. The LFR team must be allowed a significant amount of 
discretion and flexibility in the details of forecast implementation and evolution to ensure that the 
methods developed and adopted are optimally suited to the data available and to the conditions 
in which the forecast must operate.  

4.1 Long-Term Forecast Principles 

Load forecasting Principles are a set of rules or goals that define the characteristics that the 
Regulatory LFR team’s forecast should exhibit in the longer term. 

The Principles are the “North Star” of forecasting development at LUMA and are intended to 
provide structure to evolutionary decision-making: does the proposed change in the forecasting 
method improve its alignment with the principles? If yes? – proceed. If no? – reconsider.  

The Principles are summarized in Figure 7 below, and spelled out in greater detail in the table 
below that. 

Figure 7. Long-Term Forecast Principles: the "North Star" 

 

 
 
Source: Guidehouse  

Each of these Principles is described in greater detail in Table 5, below. 
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Table 5. Forecast Principles: Additional Context 

Forecast Principle Additional Context 

Principle 1: The long-term 
load forecast must be a 
function of causal 
relationships. 

• Unlike in the very short-term17, causality is very important for long-term 
forecasts. Economic growth, for example, is one driver of electricity load 
growth. Modeling such causality is essential to maintaining alignment with 
the appropriate view of the future driving other major planning decisions on 
the island. 

• The testing of causal relationships (i.e., independent variables) for 
inclusion in the forecast must include the testing of variables that capture 
macroeconomic fluctuations (e.g., Gross Domestic Product (GDP)), 
customers costs (e.g., the price of power), and weather. 

• A purely machine learning/artificial intelligence approach – which may be 
implemented without specifying causality – is therefore unsuitable for the 
long-term forecast.18  

• Estimated causal relationships used to project the forecast should be re-
visited (e.g., re-estimated or re-tested) annually. 

Principle 2: The long-term 
forecast must explicitly 
address uncertainties 
through scenario and/or 
other analyses. 

• It is vital to ensure that the sensitivity of forecast demand can be explored 
using scenarios or stochastic methods, to better understand the uncertainty 
associated with the forecast. This requires reasonable estimates of the 
causal relationships that drive load growth, and an understanding of the 
estimated uncertainty associated with those relationships and the 
underlying variables such as economic activity, energy prices and weather. 
Put differently, a single point estimate forecast is insufficient for planning 
purposes.  

• Uncertainties related to the adoption of EVs, and DERs (which may include 
distributed generation Photovoltaic (PV) and CHP, EE, Demand Response 
(DR), and storage), population growth, as well as to economic growth, and 
extreme weather events must be addressed.  

• Uncertainty may be addressed through scenario analysis, estimation of 
probabilistic outcomes, stochastic simulation, or some combination of these 
different techniques.  

• When scenario analysis is used19 they should be defined by the Regulatory 
LFR team in consultation with the GC to ensure that the scenario input 
assumptions chosen are reflective of internal stakeholders’ planning needs 
and uncertainties. 

Principle 3. The long-term 
forecast must be 
temporally and 
geographically granular. 

• Outputs must be temporally granular to capture intra-daily peak migration. 
The long-term forecast should output an hourly projection of demand. This 
may be particularly important when exploring areas of uncertainty (e.g., 
forecast adoption of EVs, storage, etc.) 

 
17 In this case “short-term” is meant to indicate day-ahead or week ahead forecasting, for which pure time-series or 
machine learning techniques (which are generally cause-agnostic) may be used. 
18 Such techniques are used successfully in the industry for short run forecasting, (e.g., 1 hour to two weeks ahead) 
and may still be used in long-term forecasting, for example to assist with developing some types of customer load 
profiles. However, for long-term forecasting they cannot be used without also including some set of interpretable 
causal estimated relationships. 
19 For example, when probabilistic techniques are inappropriate because the joint probability density function of 
several independent variables (e.g., extreme weather events and DG adoption) is unknown. 
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Forecast Principle Additional Context 

• Outputs must be geographically granular20 to reflect regional variation in 
the forecast adoption of major load modifiers (e.g., EVs, DER) and so 
support distribution planning. Geographic granularity is required to allow for 
the longer-term alignment of the regulatory and distribution planning load 
forecasting techniques and assumptions (where such alignment is 
desirable). 

• Inputs must be granular in time, geography, and major end-uses. This is 
vital for capturing structural changes (adoption of EVs, DG, storage), 
market interventions (DSM, rates), or the effects other policy-driven 
interventions, and to ensure that the effects of such changes are not 
“double-counted”. For example, annual trend variables may capture some 
growth trends in some structural drivers, and care must be taken to ensure 
that this is accounted for when load modifier adjustments to the base 
forecast to reflect structural changes. 

Principle 4. All teams 
conducting forward-
looking load analyses 
within LUMA should use a 
consistent set of data 
sources and align on 
input assumptions, 
subject to the specific 
end-user needs of the 
projection or forecast.21 

• As noted above in Principle 3, Regulatory LFR team personnel should work 
with other groups within LUMA to align both sets of forecasts within a 
common framework where advisable to do so. 

• While LUMA works towards a consistent load forecasting framework, every 
effort should be made to ensure that input assumptions and input forecast 
(and historical) values should align across different forecasts where it is 
reasonable that they do so.  

• Such alignment may not always be desirable, but where assumption or 
inputs are not aligned, they should be identified and justified. For example: 
using average (50th percentile, or 1-in-2 weather) weather in the case of an 
energy forecast used for projecting revenue, versus using extreme weather 
(e.g., 90th percentile, or 1-in-10 weather) in the case of asset-specific non-
coincident peak demand forecasting for investment planning. 

Principle 5. The 
performance of past 
forecasts must be 
recorded, monitored and 
assessed consistently 
and transparently. 

• All historical forecasts should be maintained in a common database or set 
of tables such that they remain easily accessible to the Regulatory LFR 
team on an ongoing basis. 

• At each forecast cycle update (e.g., on an annual basis), updated observed 
“actuals” should be added to the database, comparisons made with 
historical forecasts, and a summary analysis of that comparison appended 
to annual forecast reporting such that historical performance is explicitly 
considered each cycle. 

• At each forecast cycle update observed values of the forecast input 
variables (e.g., macroeconomic variables, weather variables) should be 
applied to the most recently used forecast model to obtain a “forecast” that 
is conditional on the historically observed input values in a forecast period. 
A comparison of these values with observed values will enable the forecast 
team to more precisely identify drivers of forecast imprecision. 

 

 
20 Forecast granularity in time, geography, and even major end-uses is possible within the 10-year time frame 
assumed for this report. This is highly dependent, however, on the rapid deployment of metering to a load research 
sample as soon as possible following the identification of data needs as part of Phase 3 of LUMA’s improvement plan 
(see Section 1) and the selection of a representative set of sites to which to deploy them.  
21 Different teams at LUMA produce forecasts for different purposes. Transmission and distribution teams, for 

example, project non-coincident peak demand by asset in order ensure reliable service in emergency and extreme 
conditions (e.g., 90th percentile weather conditions). Regulatory teams, in contrast, projects class-level energy 
consumption and coincident peak demand under expected median (50th percentile) conditions in order to project 
expected revenues, and allocate system costs for the purposes of rate-setting. It would be neither desirable nor 
prudent for these forecast outputs to match each other. 



 
Regulatory Long-Term Load Forecast Review 

 

  

 Page 21 
 

 

4.2 Processes, Technology, People  

This sub-section defines, at a high level, a set of methods that will deliver on the requirements 
of the Principles laid out above. These “Future Methods” are intended to be the outcome of 
extensive development and evolution by the LFR team, its management and internal 
stakeholders following a seven to ten-year development period. There should be no expectation 
that the methods below can be put into practice in the short-term. It should also be noted that 
the details of the Future Methods will likely evolve as LUMA continually assesses further 
information on the needs of the system and its customers. 

The Future Methods cannot be implemented in a vacuum. The end-state forecasting process 
that delivers on the Principles will require the adoption of new tools, or technology, and will need 
to be operationalized by the right team of people, supported by the appropriate approvals and 
governance structure. 

To present a complete high-level view of the future methods, this sub-section is divided into the 
three area perspectives identified immediately above: 

• Processes. This section describes the types of modeling, input data. workflow, and 
performance monitoring that should be part of the future load forecasting process, as it 
evolves to an end-state that delivers on the Principles above. 
 

• Technology. This section describes the technology required to support the forecast 
development methods laid out in the Processes section. More specifically, this section 
will address the tools required to support the data collection, analysis and storage needs 
of the methods defined in the Process section. 
 

• People. This section describes the management, organizational, and governance 
structure required to support the Processes, as well the skills, training, and structured 
continuous improvement needed to leverage the Technology and implement the 
improved Processes. 
 

Each of these perspectives have been further sub-divided in the sections below to ensure that 
the entire scope of the LFR team’s future methods is addressed.  
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The future methods laid out here are sufficiently specific to define the needs of the transition 
roadmap described in Section 5, but sufficiently high-level to allow the GC and LFR team some 
flexibility in its development. The reality is that the choices made by the GC and LFR team for 
the future methods development will be defined in response to evolving constraints and 
opportunities in each of the three areas. 

The methods adopted in the Processes component will be defined by the skills (People), data, 
and analytic tools (Technology) available. The tools (Technology) will be selected to serve the 
needs of the methods (Process). The skills development and governance structure (People) will 
in turn be defined by the Process and Technology components. Development will need to be 
measured and systematic, and the future methods must be defined such that the LFR and the 
GC have sufficient flexibility to meet the challenges of development as they arise. 

4.2.1 Processes 

The “processes” component of the future methods is the core of the future methods. It is the 
analytics process selected to develop the long-term forecast of customer energy consumption 
and peak demand that will dictate the technology and tools required, and how the team 
responsible for its output must be developed and managed. 

To help articulate the process needs succinctly but comprehensively, Guidehouse has divided 
this element of the future methods into three components: 

• Data Input and Workflow This section identifies the way data input sourcing should be 
established to ensure consistency of assumptions across teams producing forward-
looking projections of energy or demand, and the way in which the LFR team’s modeling 
must be flexible to the requirements of different internal (and potentially external) 
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stakeholders. The focus of the data warehousing discussion in this section is on the 
warehousing of exogenous inputs (e.g., weather, etc.). Warehousing of consumption and 
demand data is addressed in Section 4.2.2.2, and the warehousing of outputs and 
results is addressed in Section 4.2.1.3) 

• Load Modeling. It is in this component that process development is most central to the 
end-state future methods to be employed by the LFR team. This section addresses the 
development of use-per-customer modeling for customer load profiles, geographic 
granularity, and probabilistic and scenario analysis to address uncertainty associated 
with weather and other structural load drivers. 

• Performance Monitoring & Output Data Warehousing. This section lays out the kinds 
of internal Quality Control (QC) methods that should be adopted by the LFR team to 
catch errors in code development and application. This section also discusses the way in 
which historical forecasts and the estimated relationships that drive them should be 
preserved and re-examined on an ongoing basis to allow for continuous improvement.  

 

4.2.1.1 Data Input and Workflow 

LUMA’s forecasting process should, in the future, make use of a common, comprehensive set of 
exogenous inputs that can be accessed by the LFR team (and other teams developing forward-
looking analyses and outputs) from its chosen development environment. The process should 
also include a flexible workflow that can enable iterations of different sets of inputs (to serve 
different internal clients) quickly and with a minimum of “manual” adjustments. 

Input Integration 

The inputs we refer to here are not demand or energy consumption inputs (the warehousing of 
which is addressed in greater detail in Section 4.2.2), but the exogenous historical inputs 
required to estimate the relationships that drive the forecast and the exogenous forecast inputs 
applied to those relationships that will deliver forecast output values. 

Regardless of the degree to which forecasting and forward-looking analyses become aligned , it 
is important for the credibility and consistency of LUMA’s projections that all such projections 
use a consistent set of exogenous inputs and assumptions.22 To do so requires a single storage 
repository for each set of data, a regular schedule of data updates, and a clear line of 
responsibility for delivering (and advertising) those updates. Such data repositories should be 
indexed clearly and available through a single portal – a “one-stop shop”. This should be a data 
warehouse23, but may, if circumstances and constraints dictate it, simply be a guide to the 
locations of the various required databases. 

Figure 8 presents a highly stylized illustration of how work might flow between the analytics 
development environment and the input data warehouse. 

 
22 Note that there is a significant difference between “consistent” and “identical”. A sub-station-specific projection (for 
instance) would likely make use of weather only from the most proximate weather stations, whereas a system-wide 
projection might use some blended mix of stations. The crucial point (in this example) is that the source (e.g., NOAA’s 
API) is to be the same and that the localized weather values should be embedded in those of the blended value. 
23 A data warehouse is a repository of structured data: these are data prepared and processed (not “raw”) to serve as 
inputs to further analysis.  
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Figure 8. Stylized Workflow for Input Data Warehouse 

 

Source: Guidehouse 

Such a design makes referencing straightforward and sourcing consistent, allowing for greater 
integration of workflows across teams, and making collaboration more efficient. The most crucial 
inputs to forward looking analyses that should be accessible in this manner include historical 
and forecast: weather data, macroeconomic data, electricity prices, customer counts and 
population, EV counts (by location), and DERs. 

In some cases (for example customer counts or forecast EV adoption) the “inputs” so centrally 
indexed may be the outputs of analyses undertaken by different teams. In such cases, when 
values are revised or updated, previous versions should be archived but remain accessible in 
case they are later required for reconstructing (or deconstructing) previously developed 
forecasts or projections. 

Weather data may be collected from the NOAA Application Programing Interface (API)24 or any 
other reliable source of hourly historic weather data at regular intervals and processed 
(addressing outliers, measurement errors, missing values, etc.) into clean hourly series of 
temperature, humidity, cloud cover, etc. Processing of such data may also include aggregations 
(to ensure consistent aggregation procedures). This process may be automated, but if so, 
automated outputs should be subject to regularly scheduled (e.g., monthly) inspections by 
qualified analysts. The management of this process should be shared across teams, with clear 
lines of responsibility identified such that there exists sufficient redundancy in the monitoring 
and output of these values. 

Macroeconomic data collection and processing (as required) should likewise be assigned to a 
cross-team group (if relevant) responsible for compiling macroeconomic data from the various 
sources used (e.g., the FOMB, Moody’s, U.S. Bureau of Economic Analysis (BEA), etc.) and 
developing the “canonical” input data set (or data sets) that should be used consistently across 
the organization. As with the weather data team, redundancy in staffing here is important (in 
addition to the careful documentation of processes and decision-making) to ensure the retention 
of institutional memory of processes in the face of inevitable team attrition. 

All input data (e.g., projected EE achievement from potential studies, EV adoption, DER 
production, etc.) sets available through the data portal or hub used to make such data available 

 
24 Application programming interface. NOAA’s API allows users to query historical weather data interactively from 
NOAA’s servers. 
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to LUMA personnel (the LFR team and others) should be subject to a similar set of 
development, maintenance and staffing protocols, for the reasons outlined above.  

Input Selection Flexibility 

It has already been established, in the Load Modeling section above, that the LFR team will 
develop and output multiple scenarios using the same basic forecasting framework or structure. 
As additional use-cases are desired by the GC and depending on the degree to which forward-
looking analysis becomes integrated and centralized in an evolved LFR team, it is likely that 
increasing demands may be placed on that team to output alternative scenarios, filtered (e.g., 
geographically or customer-type-specific) outputs, or alternative output forecast distributions. 

The architecture and workflow adopted by the LFR team must be such that running such 
alternative outputs, whether on an ad hoc or regularly scheduled basis, can be performed 
quickly, with a minimum of “manual” inputs all preferably in a single location that can also act as 
documentation for the scenario explored.25 This is vital for ensuring consistency and quality in 
the outputs. There must not, for example, be hard values or scenario-specific case/when or 
if/else logic embedded in the core model that require manual updates for different scenarios. 
Each manual intervention carries with it the possibility of user error, and user error is 
(eventually) inevitable, and so minimizing and centralizing all user inputs is critical for 
maintaining model stability and accuracy.  

The specifics of the approach to developing a uniform input “form” will depend entirely on the 
architecture adopted by the LFR team, but as much as possible the goal should be to have a 
single control object or list of objects that can centrally updated when a novel or alternative run 
of the model is required. 

 

4.2.1.2 Load Modeling 

Load modeling refers to the process of modeling electricity use for the purposes of forecasting 
energy consumption and demand (particularly peak demand), and is further divided into six 
parts:  

• Projecting Residential and Commercial Demand and Energy in a Use-Per-Customer 
Framework. Outlines the need for LUMA LFR team to migrate to a Use-Per-Customer 
(UPC) times number of customers approach in the residential and commercial sectors, 
with a further breakout of key segments that have distinct load profiles within each 
sector. 

• Projecting Industrial, Public Lighting, and Other Sector Demand and Energy. A UPC 
times customer count approach is typically not appropriate for very large customers 
(industrial or large government installations) or those with trend-stable loads (e.g., public 
lighting). These sectors may require simpler trend-based or expert opinion/customer 
information-driven approaches 

 
25 Described below as a kind of input “form”, any such summary of major inputs and assumptions used for a given 
scenario should also include a concise narrative related to the scenario being requested, describing its purpose, 
particularly any downstream use of the outputs by other teams or functions within LUMA. 
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• Estimation of System Peak Demand Using Hourly Generation Data. In the long term, 
LUMA will have either Advanced Metering Infrastructure (AMI) or sufficient load research 
interval data from which to model and forecast system peak demand. In the interim, 
moving to the use of hourly generation data will provide more accurate peak demand26 
forecasts than continuing to apply peak coincidence factors to customer class forecast 
energy sales.   

• Geographic Granularity. Addresses how increased geographic granularity may be 
addressed through separate models, and the implications for providing support for 
distribution planning efforts. 

• Load Forecast Uncertainty Describes how load forecast uncertainty associated with 
more policy-driven or global macroeconomic factors can be addressed via scenario 
analysis, as well as potentially more sophisticated probabilistic approaches to address 
forecast uncertainty.  

• Intra-Annual Forecast Updates. Quarterly updates to the long-term forecast are prudent, 
and recommended, but should be consistent with the Annual Forecast development 
framework including review and approval by the GC. 

Additional detail and examples for each set of recommendations for the future methods 
described here can be found in Appendix  , below. 

Projecting Demand and Energy in a Use-Per-Customer Framework 
 
In the long-term end-state, the LUMA LFR team’s long-term forecast should, for the residential 
and commercial sectors be output as a function of a customer type forecast and a UPC profile 
forecast. This style of forecast approach is already quite common, used, for example27, by 
National Grid28, Pacific Gas and Electric Company (PG&E)29, Portland General Electric30, 
Avista31, and many others. Figure 9, as an example, shows Avista’s forecast residential 
customer and residential UPC growth in the near and longer term. 

 
26 This recommendation is predicated on the assumption of the accuracy of the historical hourly system-level 
generation data. LUMA continues to review the quality of the data available and may need to adopt a different 
approach depending on the findings of its review.  
27 References are provided for the first citation of a given example, but not repeated thereafter. 
28 National Grid, Proceeding on Motion of the Commission as to the Rates, Charges, Rules and Regulations of 
Niagara Mohawk Power Corporation for Electric and Gas Service, Testimony and Exhibits of Joseph F. Gredder and 
Theodore E. Poe Jr., Book 4, Case 17-E-__, April 2017 
29 Pacific Gas and Electric Company, Prepared Testimony – 2020 Energy Resource Recovery Account and 
Generation Non-Bypassable Charges Forecast and Greenhouse Gas Forecast Revenue Return and Reconciliation – 
Public Version – Section 2: Sales and Peak Demand Forecast, June 2018 
30 Portland General Electric Company, Before the Public Utility Commission of the State of Oregon – UE 394 Load 
Forecast – Direct Testimony of Amber Riter, July 2021 
31 Avista, Electric Integrated Resource Plan, 17th Edition, Final Date April 1, 2021 
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Figure 9. Example Customer Count Growth and UPC Growth from Avista 

 

Source: Avista 

This approach is recommended to better allow the forecast to accommodate structural changes 
in the composition of LUMA’s customers that affect forecast energy and demand. Consider for 
example, the adoption of EVs, or an increase in the number of customers taking service under 
some (as yet non-existent) Time-Of-Use (TOU) rate. 

Projecting a different UPC profile forecast for each major type (e.g., segment) of residential or 
commercial customer means that the overall aggregate forecast can more easily be adjusted for 
anticipated changes in the composition of the customer types, e.g., more TOU customers and 
more EV customers and fewer “standard” residential customers. 

As residential and commercial customers are segmented to better identify differing 
characteristics (particularly ownership or use of load modifying equipment), the UPC forecast 
should also evolve into an hourly projection of energy consumption. This is important for 
capturing the intra-daily shifts in demand patterns as result of load modifiers, shifts which may 
affect class-level peak demand. 

Guidehouse believes it is unlikely that that the class-level hourly data available within the 
horizon anticipated by this report will be sufficient to allow for the estimation of class-level peak 
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demand directly, though approaches (more robust than the current approach) for leveraging 
other existing data may be used to project class-level peak demand. In a sub-section below, 
Guidehouse has recommended using hourly generation data as the basis for a forecast of 
system peak demand, a forecast which could be used, in combination with class-level hourly 
data, to calibrate a more precise forecast of class-level peak demand. 

Additional support for this recommended future method, and examples of other utilities that 
have use it, may be found in Section A.1.1 of Appendix  . 

Projecting Industrial, Public Lighting, and Other Sector Demand and Energy 

A UPC-based approach may not be suitable for customer segments like Public Lighting, or very 
large industrial or government facility customers. Large industrial forecast consumption should 
be projected based on observed meter data of the individual customers, enhanced with insights 
provided by LUMA Key Account managers, or the customers themselves. For very large 
customers (e.g., sub-transmission or contract customers) most North American distribution 
utilities project demand on the basis of historic trends, substantially adjusted based on the 
opinion of experts: Key Account managers and customers. 

FortisBC32 differs from most comparable utilities in this respect. This utility forecasts large 
industrial energy use (in both its electricity and natural gas forecasts) using an innovative survey 
strategy, which presents industrial customers (both very large and more moderately sized) with 
historical patterns of use and asks the customers to project any adjustments. The most recent 
IRP indicates receiving responses from customers representing 92% of this class’s load. 

For other customer groups (e.g., public lighting, agriculture) the application of historic trends, 
consistent with the existing approach where aggregate class consumption (rather than UPC * 
customers), may remain a suitable approach for forecasting sector consumption. 

Estimation of System Peak Demand Using Hourly Generation Data.  

At present, system peak demand is estimated through the application of historical load factors to 
projected class-level consumption (scaled up to account for losses through an efficiency factor). 
In the much longer term (beyond 10 years), as LUMA develops a substantial volume of hourly or 
sub-hourly customer meter data, the LFR team should consider developing the system peak 
demand forecast from the same hourly models that will be used to deliver its energy 
consumption forecast.  

Guidehouse has recommended (see Section 4.2.2.2) that LUMA select a representative load 
research sample following its determination of data needs in Phase 3 of its improvement plan 
and deploy interval metering to this sample as soon as possible following the determination of 
the data needs. It is unlikely, however, that these data will – over the period of development 
considered in this report – be sufficient to support the development of a robust projection of 
class-specific system peak demand. There simply won’t be a long enough history available until 
several years after the load research sample is deployed.  

 
32 PDF page 34 of 87 from: 

FortisBC, FortisBC Inc. Resource Planning Advisory Group (RPAG) Meeting, 2020-06-25 

https://www.cdn.fortisbc.com/libraries/docs/default-source/about-us-documents/lterp-rpag-combined-deck-june-25-
2020.pdf?sfvrsn=4adf6d1d_2  

https://www.cdn.fortisbc.com/libraries/docs/default-source/about-us-documents/lterp-rpag-combined-deck-june-25-2020.pdf?sfvrsn=4adf6d1d_2
https://www.cdn.fortisbc.com/libraries/docs/default-source/about-us-documents/lterp-rpag-combined-deck-june-25-2020.pdf?sfvrsn=4adf6d1d_2
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Moreover, many utilities have found that using hourly generation data – along with using hourly 
weather and coarser economic growth drivers – has worked well in delivering accurate long-
term peak demand forecasts.33 The reason why is very straightforward: the development of 
peak demand forecasts directly from hourly generation data should yield superior results to the 
historical method of using indirect estimation from class/segment coincident peak demand 
factors applied to forecast consumption values.34 

Thus, the use of hourly system load data represents a good intermediate option35 to improve the 
peak demand forecast while LUMA awaits having long enough time series from load research to 
support load forecasting.  

To summarize the LFR team should develop a forecast of system peak demand using the 
available hourly generation data. Individual class (or sub-class segment) coincident peak 
demands may then be projected on the basis of this system-level forecast of peak demand and 
the class-level hourly data that becomes available as a result of the deployment of metering to 
the load research sample. Ultimately, both the system and class/segment hourly modeling will 
need to be combined to develop long-term load forecasts. 

Forecast peak demand derived in this fashion should make use of the probabilistic techniques 
described below for capturing the distribution of possible projected peak demands, and to better 
quantify forecast peak demands under “normal” (e.g., 50th percentile) or “extreme” (e.g., 90th 
percentile) weather. 

Geographic Granularity  
 
The output granularity of the Annual Forecast will be determined by the constraints of the 
available data and the needs of downstream internal LUMA stakeholders for the forecast. There 
are two levels of geographic granularity to be considered: (1) the granularity for load modeling, 
and (2) the granularity of outputs. 

Currently, most utilities model long-term system-level36 load growth very coarsely, either for their 
entire service territory or by distinct geographic regions within that territory (where they exist). 
Hawaiian Electric Company (HECO)37, for example, forecasts long-term energy consumption 
separately for each of the largest islands: Hawai’i (“Big Island”), O’ahu, Maui, and Lana’I and 
PacifiCorp and Avista forecast consumption separately by state (their service territories include 
six and two states, respectively). 

 
33 See, for example, Integrated Resource Plan, Oklahoma Gas & Electric, Prepared 2021, particularly Appendix A. 
https://ogeenergy.gcs-web.com/static-files/6fd094d7-f7d6-4dae-8ec9-7482d0071a34 
34 As noted previously it would be preferable to estimate customer class coincident peak demand using hourly 
customer meter data as the dependent variable, as generation values include losses, and may understate demand 
when load shed is required due to demand exceeding available capacity. In the absence of a robust set of hourly 
customer data, however, hourly generation data can provide a reasonable proxy for forecasting demand until such 
customer meter data as are required for such a forecast are available. In addition to using hourly generation data, 
LUMA forecasting personnel may wish to experiment with other data sources to project peak demand. Ultimately the 
most appropriate approach will depend on the findings of LUMA’s ongoing data quality review. 
35 This is conditional on the quality and accuracy of the system-level generation data. LUMA continues to review the 
quality of available data and will continue to evolve its approaches in response to the findings of this ongoing review. 
36 Distribution planning forecasts, of course, are necessarily more granular, though typically don’t extend as far out as 
the regulatory long-term forecast and may use that long-term forecast as a calibrating input. 
37 Hawaiian Electric, 2021 Integrated Grid Planning Inputs and Assumptions, August 2021 Update 
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This coarseness in modeling is often a function of the granularity of available exogenous inputs 
(e.g., GDP, employment, etc.) and the needs served by that forecast (revenue planning, power 
procurement). This is in contrast to the more granular distribution asset forecasting techniques 
which often are more medium-term (e.g., extending approximately five years) and make use of 
extant connection requests (e.g., Toronto Hydro38), non-structural time-series approaches (e.g., 
Central Hudson39), as well as weather, trend and economic regression analysis driven 
approaches (e.g., PG&E40). 

The LUMA LFR team should expect in the longer-term to produce a more geographically 
granular forecast than at present. This will be important for substantially improving the accuracy 
of the overall class-level energy (sales) and class-level peak demand forecast. These 
improvements in accuracy are delivered by accounting for the geographic disparity in the 
adoption of load modifiers such as EVs, DG, storage, and other DERs. The availability of 
geospatial projections of DER adoption and increasingly granular customer (as opposed to 
asset) demand data from improved metering should be used to develop more geographically 
granular projections of customer energy consumption and demand. 

Such increased granularity will enable greater alignment between the LFR team’s functions and 
those of distribution planning, ensuring greater consistency of assumptions41 and modeling 
mechanics. This in turn will allow for more accurate customer system cost attribution, important 
for the purposes of rate-setting, particularly for customers with DERs and participating in any net 
metering initiatives.  

With the present state of customer metering in Puerto Rico, it is difficult to identify what may be 
possible in the next seven to ten years in terms of geographic customer-level forecast 
granularity. Guidehouse would recommend that the LFR team continue to work with other teams 
represented on the GC to identify the most suitable geographic boundaries for any future 
geographically disaggregated modeling. The drivers for the selection of the regions to be used 
for modeling could include: significant anticipated differentials in the adoption of EVs and DERs 
in the future, the availability of reliable aggregate load data (e.g., from distribution and 
transmission assets serving the region) to allow for data reconciliation, and the availability of 
region-specific data that can be used in modeling (e.g., distribution of customer classes, 
population and load modifier forecasts, etc.) 
 

The anticipated modeling granularity that LUMA’s LFR team should consider will be determined 
based on the availability of data and the differences in model drivers that is observed across 
different regions. That is, using traditional econometric methods, a separate regression may be 
used to model each customer type’s UPC profile in geographic areas. Or LUMA may find that 
the UPC profiles are similar across these areas, but the customer count forecast by segment 
needs to be different for different regions. The ability of the LFR team to model different 

 
38 Toronto Hydro, Distribution System Plan 2020 – 2024, Case Number: EB-2018-0165, Exhibit 28, Section A1 
39 Demand Side Analytics prepared for Central Hudson, 2018 Central Hudson Location Specific Transmission and 
Distribution Avoided Costs Using Probabilistic Forecasting and Planning Methods, July 2018 
40 PG&E compares its regression-based asset-level forecast with a geo-spatial allocation of an input forecast 
provided by the California Energy Commission (CEC) and will select one of these, or blend them for its ultimate 
forecast. The CEC forecast provided for distribution planning takes as an input the coarser long-term energy and 
peak demand forecast also developed by PG&E. 
41 Where appropriate: distribution planning may require materially different weather assumptions (e.g., design criteria 
or 95th percentile weather) than forecast sales. 
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geographic regions separately may be constrained by the quality of the data available and the 
anticipated differences in growth rates, weather sensitivity, etc. by region. As LUMA continues 
to collect data and review its quality, the level of geographic granularity that is prudent to apply 
will continue to evolve. 

Guidehouse understands that LUMA intends to continue to explore various ways to enhance 
forecasting input data and approaches and that LUMA may assess the practicality and benefits 
of forecasting customer class-level energy and load by region as opposed to developing it for 
the island as a whole and then allocating the forecast to regions. 

Load Forecast Uncertainty  

We begin the discussion of long-term load forecast uncertainty with the observation that all point 
estimates containing long-term forecasts of the economy, electricity loads, retail sales, housing 
starts and virtually any other item are wrong. In causal modeling, errors can result from forecast 
drivers themselves being different than what was forecasted, e.g., economic growth variances, 
weather not being “normal” (50th percentile or historical average), unexpected fuel price shocks 
being passed onto customers, and the quantifiable casual relationships evolving over time. 
Given these facts, best load forecasting practices call for: 

6. Developing a range of load forecasts through scenario analysis, and/or probabilistic or 
stochastic analysis. 
 

7. Performance testing the range of load forecasts by backcasting how well the load 
forecasting models would have performed given now known values of the independent 
variables: economy, price, weather and other variables in the causal models (See the 
section below on Performance Monitoring for more information on how this is done.) 
 

8. Through (1) and (2) load forecasting professionals are able to cut through the fog of 
apparent forecast errors and explain why, for example, the forecast of loads over the last 
year differed from the midpoint of the load forecast range, and differentiate between 
model performance (over which the LFR team has control) and the performance of the 
input variable forecasts (over which the LFR team may not have control). 

This part of Section 4.2.1.2 begins with an overview of some of the different approaches for 
modeling uncertainty (scenario analysis and different types of probabilistic approaches), and is 
followed by a discussion of scenario analysis and development, and a discussion of probabilistic 
techniques. Table 6 provides a summary of some the key characteristics of three of the most 
commonly used42 approaches for modeling electricity load forecast uncertainty, as well as 
Guidehouse’s recommendations for their incorporation into the future methods. 

 
42 This table is not intended to be comprehensive and omits – for example – the use of Monte Carlo simulation 
techniques for modeling load directly using pure time series methods (i.e., without causal inputs). This example is 
omitted because it violates Principle 1, although a more detailed example of this type of approach’s implementation is 
provided in Appendix A. 
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Table 6. Summary Table of Uncertainty Approaches 

 Scenario Analysis Probabilistic – 
Historical Distribution 

Probabilistic – Monte 
Carlo Simulation 

Description Apply alternative (sensitivity) 
input forecast assumptions, 
either to model parameters 
(macroeconomic variables, 
electricity prices) or load 
modifiers (DERS, EVs, etc.) 

Apply observed historical values 
(or combinations of values) of key 
inputs with stochastic qualities 
(e.g., weather) to model 
parameters to identify distribution 
of outcomes. Select as inputs the 
combination of values delivering 
the desired probability (e.g., 90th 
percentile, 50th percentile, etc.) 

Model the historical series (e.g., 
weather) and its data generating 
process (i.e., the stochastic shocks 
and their persistence in the time 
series). 

Simulate large set of projected 
series by repeatedly taking random 
draws from the assumed density 
function (distribution) of random 
shocks and applying these to 
model parameters.  

 

Use-Cases Modeling different visions of 
the future driven by factors 
not embedded in the historical 
record e.g., changes to 
forecast DER or EV uptake 
(due to policy or other 
exogenous effects). 

 

Modeling distribution of forecast 
outcomes from different 
combinations of historically 
observed weather to estimated 
percentile probability of weather-
driven load. 

Modeling distribution of forecast 
outcomes from a simulated 
distribution of a given weather or 
price variable. 

Key Benefits Understand the sensitivity of 
forecast consumption and 
peak demand to different 
combinations of changes, 
e.g., very high electricity 
prices slow EV adoption but 
increase DG adoption. 

Use of observed weather provides 
transparency: 90th percentile 
weather is some combination of 
temperature, humidity, etc. with 
some precedent. Does not require 
structural assumptions about data 
generating process (aside from 
assumption that historical 
probability is a guide for future). 

 

Large number of simulations 
provides a smooth distribution 
(e.g., hundreds) of potential input 
values, can allow for very fine-
grained analysis (e.g., what’s the 
difference between 95th and 99th 
percentile outcome). 

Short-Comings Can be highly speculative, 
can result in significant 
stakeholder time commitment 
when defining scenarios 
(always another “what if?”) 

Probabilities are tied to historical 
distributions. May understate 
probabilities of extreme future 
weather events and the effects of 
accelerating trends in average 
weather values.  

 

Requires strong structural 
assumptions about the distribution 
of random data. Can deliver 
simulated outcome variables in 
tails of distribution disconnected 
from observable history. 

Challenging to model multiple 
processes simultaneously (e.g., 
cloud cover and temperature) as 
doing so requires assumptions 
about joint probability density 
functions. 

Can be seen by stakeholders as 
opaque and “black box”. 

 

Recommendation Implement for highest 
uncertainty load modifiers. 

Implement for modeling 
weather-based uncertainty. 

Not recommended for modeling 
weather uncertainty for Annual 
Load Forecast, though may be 
appropriate in other applications. 

 

 

Most utilities now develop multiple load forecasting scenarios to understand the consequences 
of different future outcomes and the pathways forward they suggest. As noted in a 2016 
Lawrence Berkeley National Laboratory (LBNL) paper43: “… in more recent IRPs most Load-

 
43 Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H.; Goldman, Charles A.; Ernest Orlando Lawrence 
Berkeley National Laboratory, Load Forecasting in Electric Utility Integrated Resource Planning, October 2016 
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Servicing Entities (LSEs) are developing comprehensive future settings that reflect the 
interactions of several different fundamental variables such as economic and population growth 
and alternative technology adoption…”  

FortisBC, for example, in its last two Long-Term Electricity Resource Plans (LTERPs), 
considered five alternative scenarios44, each exploring the impacts on its reference forecast of 
substantial changes in structural load drivers, including adoption of light to heavy-duty EVs, 
residential and commercial PV (with and without storage support), and growth in novel loads 
(e.g., cannabis production, data centers). Scenarios and load drivers considered were selected 
in consultation with external and internal stakeholders. In addition to two “envelope” scenarios to 
test the extremes, stakeholder input was essential to developing the narratives for the scenarios 
of most interest: “Deep Electrification”, “Diversified Energy Pathway”, and “Distributed Energy 
Future”.45 An example output is presented in Figure 10 below. 

Figure 10. FortisBC LTERP Load Scenarios 

 

Source: FortisBC46 

Guidehouse anticipates that scenario development would be, along with the use of hourly UPC 
modeling, geographic specificity, and probabilistic modeling, a core component of the LUMA 
LFR team’s future forecast methods. Additional benefits of such scenario analysis include 
motivating thinking about longer-term contingencies and what policy choices might mitigate 
against such futures. For example, rapid adoption of rooftop solar combined with expanded Air 

 
44 In both cases quantitative outputs for these scenarios were developed by Guidehouse on FortisBC’s behalf. 
45 A key element of these outputs was the development of a simplified web-based output tool that allows stakeholders 
to approximately identify the effect when alternative values are adopted for the most crucial inputs defining the 
scenario outcomes. That is, stakeholders were provided with a tool to help them understand the potential implications 
of scenarios of individual interest that were not adopted as part of the consensus of the advisory group that drove this 
process. 
46 PDF page 34 of 87 from: FortisBC, FortisBC Inc. Resource Planning Advisory Group (RPAG) Meeting, 2020-06-25 

https://www.cdn.fortisbc.com/libraries/docs/default-source/about-us-documents/lterp-rpag-combined-deck-june-25-
2020.pdf?sfvrsn=4adf6d1d_2  

https://www.cdn.fortisbc.com/libraries/docs/default-source/about-us-documents/lterp-rpag-combined-deck-june-25-2020.pdf?sfvrsn=4adf6d1d_2
https://www.cdn.fortisbc.com/libraries/docs/default-source/about-us-documents/lterp-rpag-combined-deck-june-25-2020.pdf?sfvrsn=4adf6d1d_2
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Conditioning (A/C) penetration might further erode system load factors, putting future upward 
pressure on rates, a situation potentially mitigated by the adoption of time-varied pricing and a 
policy of encouraging EV adoption. 

Such scenarios also provide planners with a venue to be responsive to stakeholder concerns 
and demonstrate the flexibility to consider stakeholder input on future developments, even 
where it may not align with the consensus of expert opinion within LUMA. This may be 
particularly useful when modeling the impacts of aspirational legislative polices on customer 
loads.   

In addition to scenarios, many utilities employ probabilistic techniques to address uncertainty. In 
load forecasting, probabilistic and stochastic methods are often simulation-based approaches 
applied to forecast the distribution of the output time-series dependent variable, rather than 
simply a point-estimate. This can be a very helpful output when the use-case for the forecast 
has an asymmetric loss function – that is if the cost of under-forecasting (for example) load is 
much higher than the cost of over-forecasting.  

Probabilistic techniques are principally used to model the effects of exogeneous data that 
significantly impact loads, and for which there is a sufficiently robust history of observable 
values to motivate simulation. Temperature and temperature-related variables are a prime 
candidate for such uncertainty analyses (e.g., as used by Ontario’s Independent Electricity 
System Operator47 (IESO) - for its Reliability Outlook or Electric Reliability Council of Texas 
(ERCOT)48 for developing its forecast scenarios). PacifiCorp uses stochastic techniques to 
model DG production and its impact on the net load forecast.49 

In load forecasting, probabilistic methods are often simulation-based approaches applied to 
forecast the distribution of the output time-series dependent variable, rather than simply a point-
estimate. This can be a very helpful output when the use-case for the forecast has an 
asymmetric loss function – that is if the cost of under-forecasting (for example) load is much 
higher than the cost of over-forecasting.  

For modeling the uncertainty associated with weather, Guidehouse recommends that in the 
longer term the LUMA LFR team adopt a simulation approach based on observed historical 
weather. This style of approach to probabilistic weather projection has the great advantage 
(among others) of being able to capture the non-linear effects of accumulated thermal build-up 
more accurately. This style of approach (applied by ERCOT and the IESO, among others) 
involves the application of historically observed combinations of weather variables to forecast 
regression model parameters to better assess the range of energy or demand values 
associated with these observed weather combinations. 

The resulting output distribution can then be used for delivering a probabilistic forecast: the 
median peak day weather is applied in the forecast period for 50th percentile forecast, and 
similar percentiles of the distribution (e.g., 90 or 95th) to reflect uncertainty and the GC’s desired 

 
47 Independent Electricity System Operator, Methodology to Perform the Reliability Outlook, March 2021 
48 Electric Reliability Council of Texas, Inc. 200 ERCOT System Planning: Long-Term Hourly Peak Demand and 
Energy Forecast, January 18 2022 
49 Stochastic techniques are also used to model random variation in pricing that may affect power procurement (in 
interconnected markets). This is not addressed in this section as it is not directly relevant to load modeling in LUMA’s 
service territory. In the unlikely event that LUMA were to anticipate a significant amount of flexible load to become 
subject to some form of real-time pricing, inclusion of probabilistic modeling of the real-time price (and its concomitant 
effect on demand) would be recommended. 
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confidence interval containing extreme weather forecasts. Figure 11 shows the outcome of this 
approach as applied by ERCOT on forecasted peak demand. Extreme weather is derived from 
the 90th percentile weather values, and the reference forecast from the 50th percentile values. 

Figure 11. Outcome of ERCOT Probabilistic Weather Projection 

 

Source: ERCOT 

As noted in the table above, a great advantage of this approach is that no structural 
assumptions regarding random shocks (or the joint probability of shocks to different weather 
types) need be imposed. The weather applied to deliver a forecast value can be directly tied to a 
historical value. This offers much greater transparency than a Monte Carlo approach. 

Considerable additional discussion of load forecasting uncertainty analysis, and accompanying 
examples, may be found in Appendix  . 

Intra-Annual Forecast Updates  

In the current state, the LFR team develops Quarterly Updates three times per fiscal year to 
support the updates of the FCA and PPCA rate-riders. The current approach to these updates is 
to apply an entirely different analytic framework to develop the near-term (i.e., remaining fiscal 
year) projection of energy and demand through the use of generation data.  

We recommend that the LFR team continue to update forecast values at this frequency but do 
so in a fashion consistent with the overall framework of the Annual Forecast approach. 
Specifically, Quarterly Updates should be driven principally by the application of updated input 
forecasts to the model estimated parameters.50 This will ensure that the Quarterly Updates will 
capture the effects of any major macro shocks (e.g., the emergence of a global pandemic, or 

 
50 It is our expectation and recommendation that the model parameters – the estimated relationships to which the 
forecast input variables are applied – will be re-estimated once per year (reflecting updates to observed consumption 
and demand) to support the development of the Annual Forecast. For the Quarterly Updates, however, the 
expectation is that only the input exogenous forecast variables are updated, and no re-estimation is required. 
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major recession or financial crisis) that result in substantial revisions to forecast economic 
variables. 

 

4.2.1.3 Performance Monitoring & Output Data Warehousing 

Performance monitoring refers to internal workflow QC undertaken by members of the LFR 
team and to a commitment to continuous improvement through retrospective examinations of 
previous forecasts. External (to the LFR team, not LUMA) quality review and approvals by the 
GC and its delegates are addressed in Section 4.2.3. 

Internal Workflow QC 

The codebase or modeling architecture developed by the LFR team for the Annual Forest (and 
Quarterly Update updates) should reflect a philosophy of “defensive” development. That is, 
while effort must be made to ensure that the codebase and inputs do not include errors, it must 
be assumed that errors will occur. The LFR team must adopt a formal process or set of 
procedures to ensure that when errors do occur – for example due to an unexpected interaction 
when a novel scenario is deployed – that they can be detected, and corrected. 

A key component for such a process is the output of interim values and tables as the input data 
roll through the scripts that manage the model estimation and forecast outputs. These may 
include binary checks (e.g., “sum checks”, “max checks”, etc.) or more complex tables of output 
values or relationships. Prior to up-chain submission of forecast outputs within the organization 
all such outputs should be checked, and – where relevant – commented on by members of the 
LFR team.  

Such checks should be performed both by the lead analyst responsible for the given process, 
but also by a colleague (either a manager or in an adjacent role) to provide a “fresh eyes” 
examination. The socializing of such checks internally within the team (including with more 
junior team members) is vital, not simply to catch errors, or identify unexpected outputs (which 
can often provide important interpretative insight) but for educational purposes. 

Formal checks of interim outputs provide opportunities for more senior team members to train 
their teams in the interpretive elements of forecasting. Code development, econometrics and 
other techniques of the data sciences can all be learned through formal education and training, 
but interpretative analysis, the ability to examine an output and understand its implications – 
what it means – requires hands-on experience. 

A formal, collaborative, and well-documented internal QC process not only minimizes the 
likelihood of any errors propagating before they can be caught, but is essential for developing 
skills and abilities, maintaining institutional memory and expertise, and ensuring the longevity of 
the (sometimes hard) lessons learned by more experienced analysts.  
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Retrospective Forecast Review and Continuous Improvement 

Whenever a forecast (whether a reference forecast or scenario) is finalized and approved, all 
input sets, and model objects51 must be preserved in some accessible archived format. As data 
volumes and model complexity grows, storage may present challenges and solutions will need 
to be developed to avoid any unnecessary duplication of archival materials, but the preservation 
of such materials is critical for the continuous improvement of forecast accuracy. All results and 
outputs require their own data warehouse, analogous to the exogenous input data warehouse 
(described in Section 4.2.1.2) and the demand and energy input data warehouse (described in 
Section 4.2.2.2). 

It is an axiom of predictive analysis that all forecasts are wrong. Understanding why previously 
made forecasts do not match observed outcomes is essential for continuously improving the 
quality of forecasting. Formal comparisons of past forecasts with observed values is also 
important for maintaining accountability and building institutional trust. 

In the long term, the LUMA LFR team should, as part of its annual forecasting outputs, include a 
written assessment of, at a minimum, the previous year’s forecast.  

The forecast-to-observed comparison should proceed in two steps. The first is a simple 
comparison of the forecast and observed variables. Though important for transparency, this 
comparison is in the less useful of the two comparisons that should be performed. For one 
thing, since observed weather will likely not match the normal or (depending on the type of 
forecast), extreme weather used to project load material discrepancies between the two series 
will be inevitable. 

Far more important (from the perspective of continuous improvement) is the comparison of a 
“back cast” or ex post forecast with observed values. An ex post forecast is what is output when 
the observed values of input variables from the period covered by the original forecast are 
applied to the estimated model relationships. Put another way, this series is what is obtained 
when instead of applying the forecast input variables to the estimated relationships, the actual, 
or observed, inputs are applied to those relationships. 

Comparing this ex post forecast of load to actually-observed load then helps to reveal the 
quality of the model. If, for example there is a significant deviation between the original forecast 
and observed values, but very little deviation between the ex post forecast and the observed 
values, this would indicate that the model is performing very well, and the issue is with the 
forecast input variables. 

In such a case as this the problematic inputs (and their impact on forecast outputs) could then 
be isolated through iterative replacement of forecast inputs with observed inputs. The outcome 
might be a reconsideration of the source of (for example) forecast macroeconomic variables, or 
the identification for improvements in certain internally generated input forecasts. 

Consider the example shown in Figure 12. One year after it was developed, the forecast (green 
dashed line) is compared to observed actuals (blue dashed line). It appears to have significantly 

 
51 “Object” in this case refers to the bundle outputs typically output when econometric or other models of 
dependent/exogenous variable relationships are estimated. In the case of a regression this might include parameter 
values, summary statistics, in-sample predictions and residuals, the covariance matrix, diagnostic inferential 
statistics, etc. 
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over-estimated future consumption. After performing a backcast (red dashed line), the LFR 
team better understands the issue. 

• In Scenario A, the backcast (red dashed line) is very similar to observed values. In this case 
the driver of the forecast error is an input forecast. More accurate input forecasts are 
required. Where the LFR team is constrained or required to use an input forecast identified 
as problematic, sensitivity scenarios should be developed with alternative inputs to provide 
additional context to the reference forecast that is a function of the problematic input 
forecast. 

• In Scenario B, the backcast is similar to the original forecast and considerably overstates 
observed consumption. In this case the driver of the forecast error is one or more of the 
regression-estimated model parameters. It’s likely that a different model should be used, or 
at least explored. 

 

Figure 12. Backcast Comparison Example 

 

Source: Guidehouse 

 

Such ex post forecast review and be used to supplement out-of-sample model testing when 
determining in each cycle what updates may be appropriate to any model specifications. 

As noted above, such an assessment should be performed (when the capabilities are in place 
and the resource capacity has been developed to do so) on an annual basis, with the previous 
year’s forecast examined. The shortcoming of this is that comparing only the most recent year 
may reveal deviations that are minor over a 12-month period but that could propagate and result 
in more serious systematic forecast biases over the longer term. 

To address this issue, older forecast model objects should periodically be revisited, and ex post 
forecasts output to identify to just how much some of the estimated relationships have changed 
over time. Such examinations will only be useful when the current forecast’s structure is 
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approximately similar to that of the older forecast (e.g., more or less the same variables being 
used, etc.) Key triggers for this kind of deeper historical review could include: consistent 
patterns of bias in ex post forecasts, significant suspected changes in the relationships between 
load drivers and load (for example due to economic shocks), or the introductions of disruptive 
technologies or programs (e.g., highly subscribed new tariffs, substantially increased sales of 
enabling technologies, etc.) 

Finally, all formal reviews of prior year forecasts should identify key lessons learned that can be 
applied to subsequent forecasts, even when the lesson may simply be that the existing model is 
performing to expectations and should continue to be used. 

4.2.2 Technology 

The “Process” component detailed above is the core of the future methods; it is the techniques 
and approaches described above for this component that will define the character and quality of 
the LFR team’s forecasts. These processes, however, are impossible to implement as intended 
without the tools – the Technology – appropriate to enable it. This section provides a description 
of the analytics and data management tools that the LFR team will, in the longer term, require at 
its disposal to deliver on the methods discussed above. It is not intended to provide a detailed 
breakdown of the strengths and weaknesses of any specific platforms, software, or metering 
technologies, but instead is a general discussion of what capabilities are required of such tools 
to serve the needs of the LFR team and LUMA. 

The two subsections immediately below outline the most crucial groups of technology needed to 
support the next-generation processes described in the section above. They are: 

• Analytics Technology. The LFR team should, in the longer-term completely transition to a 
code-based development environment to allow for the flexibility required for the processes 
described above. The selected development environment should allow for direct integration 
with large databases of customer meter data, generation data, and (as relevant or required) 
distribution asset data. 

As data volumes and the complexity of operations increase, processing requirements will 
exceed the capabilities of desktop machines and operations should be executed on 
dedicated LUMA or secure cloud-based servers or clusters. Third-party “software-as-a-
service”-type analytics may be considered for adoption. 

• Data Collection and Storage Technology. UPC customer profile development requires 
high-frequency customer meter data. A robust load research sample of meters will fill this 
gap until comprehensive AMI deployment becomes feasible. As with the input data 
warehouse discussed above, all processed profiles and cleaned metering data will need to 
be stored such that it can be accessed interactively by LFR and other team analysts 
interactively from the selected development environment. 

4.2.2.1 Analytics Technology 

At present, the LFR team relies principally on Microsoft Excel (and, to a lesser extent Access 
and EViews52). In the longer term, such tools will be insufficient for the LFR team’s needs. 
Importantly, to develop the type of resilient workflow that enables agile team response to 

 
52 http://www.eviews.com/home.html  

http://www.eviews.com/home.html
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requests for scenario development and analysis, some form of code-based development 
environment will be required. This environment must allow users to query the key data 
warehouses (i.e., the input data warehouse discussed above, and a data warehouse of 
customer and asset load data) directly, and should, ideally, be sufficiently flexible to support a 
variety of load and load research analytics, not just forecast development. 

There exist a variety of different types of platforms and programs that may be selected to 
support analytics and forecasting, both open-source and proprietary. Given some of the data 
challenges that LUMA faces, and the unique geographic and demographic circumstances of its 
service territory, Guidehouse recommends that the LUMA LFR team consider adopting an 
open-source development environment, such as R software or Python.  

The selection of the development program (whether open-source, as recommended, or 
proprietary) must be made in consultation with other analytics groups (particularly those 
involved in load forecasting) at LUMA. The institutional benefits of a common platform across 
departments and groups are considerable, reducing costs of transitioning personnel from one 
area to another, and permitting collaborative innovation across teams. 

Recent surveys of data scientists53 indicate that open-source platforms continue to be the most 
popular platforms amongst practitioners (doubtless due to their use in the academic 
community). Python and R software54 are both suitable tools for the type of workflows discussed 
above. Open-source tools provide many cost and work-flow advantages – in particular very 
active and engaged online communities with accessible code examples.55 The adoption of 
open-source tools will likely, however, require the enhancement of IT personnel to ensure the 
appropriate architecture is in place to support server- or cloud-based deployment of such 
solutions. 

Considerable development of processes and workflows will be required (and are discussed in 
Section 5) with the adoption of a new development environment, as would hiring and training 
additional personnel along with new training for the existing team. A systematic and measured 
internal approach to workflow and modeling development, however, will mean greater 
“ownership” of the process by the LFR team, which in turn will mean greater accountability and, 
in the long-term, greater stability and accuracy. The flexibility of such systems makes them 
suitable for wider adoption within the organization for more generalized analytics, which in turn 
can yield benefits from integration and cross-pollination with other groups, as well as skills 
redundancy to mitigate the effects of team attrition. 

The open-source platforms above are noteworthy in that they provide a sufficiently powerful and 
flexible development environment to be used for all the required pre-processing and analytics 
required by the LFR team and others, as well as being equipped with modeling routines 
sufficient to directly support estimation and extrapolation needs. For example, Guidehouse uses 

 
53 Such as this one by Kaggle (a subsidiary of Google, and host of an online community for data scientists). 

Kaggle, 2020 Kaggle Data Science & Machine Learning Survey 

https://www.kaggle.com/code/paultimothymooney/2020-kaggle-data-science-machine-learning-survey/notebook  

accessed May, 2022 
54 R is the primary data science tool used by Guidehouse’s Analytics group. 
55 Guidehouse migrated from a SAS to R development environment beginning in 2013, to great success. 
Guidehouse’s experience has been that doing so has considerably lowered the barrier to entry to junior staff, who 
often join with existing experience in R or Python, and that this has in turn motivated much greater cross-team 
collaboration and innovation. 

https://www.kaggle.com/code/paultimothymooney/2020-kaggle-data-science-machine-learning-survey/notebook
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R to connect directly with NOAA’s API and with server or cloud-based data warehouses. It can 
also be used for geo-spatial modeling, data preparation as well as estimating econometric error 
correction models and implementing machine learning algorithms. 

Whatever solution is eventually selected by the LUMA LFR team (in consultation with its internal 
stakeholders and the GC), it must be one capable of meeting the modeling requirements 
described in the Process section above. As the data sets available grow in size, this will 
inevitably mean that the solution must be hosted either on internal servers or as some part of 
cloud-based service. This fact should be considered as the merits of competing systems are 
debated internally. 

Although Guidehouse strongly recommends the adoption of an open-source development 
environment, many utilities do use proprietary environments (such as Statistical Analysis 
Sysytem (SAS) or MATLAB) software and some supplement these with industry-specific pre-
packaged tools. The largest issue around using such tools relates to People as discussed in 
Section 4.2.3. The specialized training required to be a load forecaster and a programmer using 
these proprietary languages is incompatible with team attrition and the movement of personnel 
within the modern service industry.  

For example, Guidehouse has seen several utilities suffer from being unable to replace workers 
in whom they have invested considerable time training in specialized software. This issue can 
be mitigated through the use of open-source platforms with much larger existing user-bases. 
Utilities with an existing code base may be reluctant to undertake the cost of refactoring their 
existing processes from a proprietary to an open-source platform, but the LFR is in a superior 
position relative to these entities: LUMA is moving from old non-code-based load forecasting 
approaches to new code-based ones and is therefore less affected by that kind of history or 
institutional inertia. Finally, although Guidehouse does not recommend proprietary load 
forecasting software packages for LUMA, in the interest of providing a representative 
perspective, these are discussed in section A.2 of Appendix  . 

4.2.2.2 Data Collection and Storage Technology 

In addition to having an analytics platform capable of (and suitable for) developing the overall 
forecast workflow and model estimation and projection, the availability of sufficient data is 
crucial to the successful execution of the future methods described in the Process section 
(4.2.1). This section addresses questions of how data to support customer consumption and 
demand forecasting may be collected, and then the appropriate manner in which such data 
should be warehoused and made accessible to the LFR team. 

As in the discussion of the analytics technology platforms, the perspective reflected here is that 
of the load forecasting practitioners; detailed discussions of different types of metering, or of the 
qualities of different large-scale data management programs are beyond the scope of this 
report. Rather, this section outlines what capabilities could reasonably be expected to be in 
place in the next seven to ten years to serve the needs of the future methods’ processes. 

Data Collection 

In the very long term, Guidehouse assumes that LUMA will adopt some form of AMI metering 
that will make hourly or sub-hourly meter data for most customers available to the LUMA LFR 
team. It seems improbable, however, that such metering will be comprehensively in place within 
seven to ten years. 
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The future methods specified in the Process will require high frequency load data with sufficient 
history (e.g., 2 – 3 years at minimum) to allow for the effective estimation of UPC profile 
relationships. Such input data could be provided from a load research sample, carefully selected 
and strategically expanded, year by year. In deploying metering to a load research sample, 
LUMA should carefully consider the marginal costs of applying some metering to end-uses of 
particular interest (e.g., Heating Ventilation and Air Conditioning (HVAC), EV charging, etc.) in 
addition to whole-building metering. 

By the time the future methods outlined in the Process have been mostly developed (e.g., in 
approximately seven to ten years) the data from a mature load research sample must be in 
hand to support them. As is addressed in the road map in Section 5, LUMA, the selection of an 
initial set of meters to make up the first group of load research meters should be expedited to 
ensure the availability of the required historical data when such data are required. 

It should be noted that the planning and execution of this data collection must be informed by 
the determinations made in Phase 3 of LUMA’s plan (see the introduction to this report), the 
identification of data needs.  

Section A.2.2 of Appendix   provides some additional recommendations and discussion of how 
other data collection activities may supplement this sample metering. 

Data Warehousing 

As with the exogenous inputs, some central repository for prepared (i.e., “clean”, analysis-
ready) demand data will be required. In its early years (when the LFR team is still relying on 
load research sample interval data) size is unlikely to be an issue, but the LFR team and others 
should ensure that whatever solution is selected for demand data storage, it is scalable over 
time. Once AMI metering data begin to become available the rapid accretion of data may be 
challenging to manage. 
 
The data warehouse under discussion here is not intended to act as a Meter Data Management 
System (MDM/S) – though of course such a system will be necessary to accommodate AMI 
data and any kind of time-varied pricing – but rather as an analytic resource to the LFR team 
and other teams as necessary. Like the exogenous inputs data warehouse, data tables within 
the demand data warehouse should be updated on a regular basis, and a clear line of 
responsibility for delivering (and advertising) those updates established. 
 
It should be possible for the LFR team (and others) to query interactively from the database 
using the selected analytics development environment to minimize the introduction of error 
during transfers, and to allow for processes to be automated. As with the input data warehouse, 
redundancy should exist in the personnel responsible for administering and managing the data 
warehouse to ensure the continuity of available expertise and avoid any interruptions of data 
updates.  

4.2.3 People 

The “Processes” section above outlined some of the future analytic methods and processes that 
should be adopted by the LFR team in the longer term. The “Technology” section discussed 
some of the tools that would be required to enable those methods. This section, “People” 
describes some of the characteristics that would be required of the load forecasting personnel 
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that are part of the LFR team, and some of the management structures and organizational 
incentives that would need to be in place to maximize the value that the team offers. 

4.2.3.1 Team 

The LFR team will require a diversity of skills to implement the methods and use the tools 
described above. The interdisciplinary team will likely need to include: 

• Econometricians, with formal training in causal / structural modeling as well as time series 
analysis and approaches for diagnosing (and correcting) violations of the classical 
regression analysis assumptions (e.g., serial correlation). 

• Data scientists, with training in the application of machine learning techniques, for example 
to (potentially) identify and attribute major changes in usage patterns to new end-uses (e.g., 
EVs, DERs) 

• Data engineers, with training in database management, design, and maintenance.  

• Engineers, with training in electricity generation, transmission, and distribution systems, and 
an in-depth understanding of the physical realities being analyzed by the data scientists and 
econometricians. 

New hires with econometric, data science, or data engineering backgrounds should have 
accomplished some graduate studies (i.e., have either a relevant Master’s degree or a graduate 
diploma from a highly targeted technical program). Guidehouse estimates the LFR team will 
require, to support the updated processes discussed above, approximately six full-time 
personnel, however this may change depending on the skills and backgrounds of the individuals 
within the team. 

Some personnel may not be full-time members of the team or may be shared across other 
teams. For example, UPC profile modeling should include the input and review of an engineer 
well acquainted with the physical realities being modeled – such an engineer could be seconded 
to the LFR team on a part-time basis for just this purpose. Likewise, a data engineer may not be 
required as a full-time member of the team but might be shared with other teams within LUMA 
with deep data requirements. 

Regardless of the formal departmental assignment of the members, the mix of skills above is 
crucial, as is the need to ensure some overlap in expertise. The econometricians, for example, 
should be able to execute queries from the data warehouse, and the engineers should be able 
to interpret the signs and values of parameters estimated using regressions. This overlap of 
skills ensures a certain amount of embedded redundancy essential to maintaining team 
resiliency. The successful completion of annual updates to the forecasts or scenarios should 
never hinge on the availability of a single person. 

Within the team, personnel should be encouraged to provide each other with mentorship and to 
build the resiliency of the team with an informal or quasi-formal apprenticeship model. Section 
4.2.1.3 (“Internal Workflow QC”) noted the educational importance of QC activities. Model, 
forecast, and workflow updates (i.e., annual maintenance and changes) share this characteristic 
and provide an opportunity for more experienced personnel to tutor those with less experience 
in reviewing inputs, updating workflows, and interpreting the outputs.  
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Ultimately the goal of such internal team development via apprenticeship and informal 
mentoring is to perpetuate an institutional memory of lessons learned and to help accelerate the 
development in junior team members of analytic intuition56, even in fields in which they may 
have little or no formal training.  

4.2.3.2 Management & Organization 

The “Team” sub-section above focused primarily on goals and expectations for intra-team 
development – informal ways of working that should be encouraged by management. This 
section focuses on the role of management in enabling such intra-team development, 
collaboration and integration with other teams and workflows, and of establishing a formal 
accountability and review structure that culminates in the approval of a final official version of 
the Annual Forecast by the GC. 

This section begins with a discussion of team structure – covering some of the same material 
above but focused on management’s responsibilities for developing it. It continues with a 
discussion of strategies to encourage collaboration and the adoption of a common work culture 
with other load forecasting teams (e.g., distribution planning and system operations), and 
concludes with a sub-section outlining what a formal approvals process used for finalizing the 
Annual Forecast might eventually resemble. 

 

 

Team Structure, Collaboration, and Culture 

At present, the LFR team is small (three Full Time Employees (FTEs)), and with very little in-
built redundancy. Much of the analytic work is performed by the team lead, and it is unclear 
whether to what degree the team could continue with its work if the team lead were unable 
perform their duties, for whatever reason.  

Subsection 4.2.3.1Team  above noted the diversity of skills required for the team, the 
importance in overlap of skills and abilities (to ensure against team attrition), and the potential 

 
56 “Analytic intuition” here refers to the ability of experienced analysts and forecasters to intuit – to feel out - the 
narrative reality driving the observed data, and to validate, adjust, or reject that intuition on the basis of evidence 
derived from the data at hand. This ability to understand and articulate the underlying narrative driving the modeling 
choices and the forecast outcomes is an essential component of load forecasting teams. The importance of this skill 
will only grow as the disruptive load modifiers without historical precedent (e.g., DERs, EVs, etc.) proliferate. 
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for personnel to be shared with other departments or teams (particularly those undertaking 
forecasts or forward-looking projection).  

Team management should formally track the responsibilities of all team members in a manner 
consistent with the forecast development and update steps laid out in any QC (see Section 
4.2.1.3) or procedural (see Section 4.2.3.2) documents. That is, for each discrete task or set of 
tasks there should be identified (at minimum) two people: a task lead and a task support team 
member. Ideally there should additionally be for each task a backup team member, though for 
some tasks, depending on the experience of the support team member, they may be able to 
take on this role. Figure 13 presents a stylized example of what this structure could look like 
(assuming a backup person for each task), across different tasks. This is intended for illustrative 
purposes only. 

Figure 13. Team and Task Structure – Illustrative Example 

 

Day-to-day updates and minor changes are planned by the lead and may be executed by the 
support resource or by the support resource in collaboration with the lead. The backup person 
(if one is assigned and the complexity of the task requires it) is available to replace either the 
lead or the support person if necessary. The expectation would be that support personnel would 
rotate through a variety of tasks as support resource, allowing them to act as backups to 
multiple leads, replacing them temporarily or – if necessary due to attrition – permanently. 

From time to time the team may be augmented using external consultants to accomplish 
specific tasks over defined periods of time. The focus of such augmentation should be on 
enabling the LFR team improvements – supporting self-sustaining changes, rather than 
outsourcing LFR team functions.   

Additional recommendations for supporting team development and encouraging collaboration 
and the development of a common work culture across teams (outside of the LFR team may be 
found in Appendix  )   

Accountability and Review 

The set of forecast and data management processes outlined above entail many complexities, 
and a potentially extended chain of custody (e.g., the preparation of many different sets of input 
data, some from different teams, the estimation of models for different customer sectors by VoC 
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specialized groups, etc.) Even with the best internal QC procedures errors or unexpected output 
values will inevitably appear.  

The long-term Annual Load Forecast process needs to be situated within a governance 
structure with formal sign-off requirements to ensure not just the quality of the output, but its 
consistency with the needs and assumptions of other business processes. In parallel to a 
governance structure that identifies sign-offs by analysis leads or qualified managers in 
departments providing inputs, transparent and clear documentation of processes must be 
maintained and updated on a regular basis. Finally, management may consider periodically 
benchmarking the LUMA LFR team’s documented approaches against those of peer utilities 
through a combination of literature review and interviews. 

Depending on the degree to which the LUMA LFR team integrates with other departments’ load 
forecasting or analytics teams, the ultimate sign-off that identifies the most recent version of the 
Annual Load Forecast as the final official version in the current cycle may below either to the 
Vice President (VP) of Regulatory, or to an executive group (no more than 2-3 individuals) to 
which this responsibility is delegated by the GC. 

The party or parties responsible for the ultimate sign-off should be provided with a document 
compiling summaries of up-stream QC and input validation sign-offs by the leads or managers 
responsible. For example, the input forecast of EV adoption might be addressed by a section 
summarizing: 

• The updated forecast values and any material changes in trends or output values. 

• Any methodological or input changes applied since the last iteration produced, with a 
concise justification for their adoption. 

• A comparison of the updated projected values against both actuals and the previously 
provided forecast accompanied by any supporting narrative (as needed) 

• Formal confirmation that a set of pre-determined QC checks were performed (and what 
those checks were) 

All such content (with perhaps the exception of a formal acknowledgement of QC checks 
confirmed) would be expected to be developed and documented anyway as a reporting 
supplement to the output forecast and so should not therefore represent a significant 
incremental level of effort on the part of the leads responsible. The approval document rather 
would act as a targeted “check-list” and summary compilation of the most crucial information 
required to ensure that the final responsible party is sufficiently confident in the integrity of the 
workflow (and the quality of its output) to provide the final sign-off. 

Note that such an approval document act as a supplement to, not a replacement for, any 
standard reporting documents required to accompany forecast submission. It would be intended 
to allow the party or parties responsible for final sign-off to confirm the review and sign-off of all 
upstream analysis leads and managers and to identify any major changes from previous 
versions that might require additional discussion with the GC. 

Documentation and Review of Approaches 

As noted above the summary accountability report would be a supplement to a formal load 
forecasting report presenting outputs and providing such analysis as is required to contextualize 
the projected outputs from both the reference forecast and any scenarios developed. 
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Guidehouse would anticipate that this formal internal report would be accompanied by data 
sheet appendices providing appropriately aggregated forecast outputs and inputs. 

The specific contents of such a report will be determined by internal reporting requirements and 
the scope of the forecast and its outputs, but Guidehouse would anticipate that detailed 
discussions of methodology and approach would not be included, unless as an appendix.  

Rather, the LFR team should develop a separate detailed presentation of the modeling 
approach. This document would not necessarily require the level of detail of a procedural 
document, but should include an identification of key modeling choices, inputs used, etc. 
Guidehouse would anticipate that this detailed methodology would only need (depending on the 
velocity of the evolution of the LRF team’s forecasting approach) to be updated every 2 – 4 
years, though an annual technical update highlighting material changes to the core approach 
should be produced on an annual basis. 

Additional discussion of recommended documentation and internal publication processes may 
be found in Appendix  . 
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5. Future Methods: Transition Plan Road Map 

The previous section of this report provided a high-level description of the future methods 
LUMA’s LFR team should adopt in the longer term. These methods cannot be adopted 
overnight – to ensure its success, the changes laid out above must be developed deliberately 
and carefully. 

Measured and systematic evolution of LUMA’s load forecasting techniques is important to: 

• Foster development of the LFR team and other LUMA teams that undertake forward-
looking analyses of demand and energy. The long-term success of the LFR team – and 
the quality of its outputs – will depend on its ability to drive its own evolution. Steady 
incremental change will allow the team and its management to “own” its future methods. 

• Retain and expand institutional memory. Load forecasting requires interpretive 
analysis, driven by a systematic review of inputs and outputs filtered through expert 
opinion and intuition. These require experience to develop. The LUMA LFR team’s lead 
provides a strong foundation of institutional knowledge upon which to build, but as the 
team expands, time will be needed to transfer and expand that knowledge. 

• Avoid disruptions to outputs. The LFR team’s outputs are critical inputs to a number 
of business and regulatory processes at LUMA. Changes to methods must not disrupt 
these outputs. To safely avoid such disruption systems or workflows must be 
transitioned systematically with care. In some cases, it may be prudent to run both 
workflows (the old and the new) in parallel for one forecast cycle to identify the impact of 
updates on output. 

Informed by an understanding that change must be deliberate and carefully executed, this 
section provides a high-level road map to assist LUMA’s LFR team in negotiating the transition 
from its current state to the future methods outlined in the previous section. Figure 14 provides a 
stylized summary of the transition process. 
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Figure 14. High-Level Transition Roadmap57 

 

This section provides a summary transitional road map for the workstreams identified in Section 
4 in each of the sections that follow. 

The Guidehouse team notes that the volume of recommendations is substantial, and that the 
practical constraints and changing realities faced by the LFR team may require them to 
implement these recommendations selectively and may require adjustments to the relative 
timelines plotted out below. 

Guidehouse believes that it is possible for all of the transitions outlined in this section may be 
completed in the 10-year time-frame time span anticipated by this report, subject to the 
availability and provision of the funds and resources (human and material) to enable them. 
Implementing these transitions will, however, be a significant undertaking with many 
interdependencies. 

As LUMA continues to assess the quality of the data available and collect new data, the 10-year 
planning horizon identified in this report should be periodically re-examined in the context of 
other on-going changes to the environment in which LUMA operates and revised if required. 

Finally, though the Processes, Technology, and People workstreams are all presented 
separately below, they are not independent of one another, and completion of some transitions 
in one workstream may require the completion of transitions in another workstream. The three 
most important dependencies here are: 

1. The LFR Team Needs a Technical Lead. The LFR team has considerable experience 
in forecasting long-term load growth at LUMA, understands the local context and 
institutional needs very well, and has shown flexibility in adapting to the challenges that it 
has faced so far. 

To proceed with the transition as mapped out below, however, the team requires a 
technical lead to provide assistance to the team lead. The technical lead should be 

 
57 Note that references to metering here are not meant to indicate the assumption of full AMI deployment, but rather 
of the deployment of a relatively small number of meters to a carefully chosen load research sample. 
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someone with a load forecasting background, experience with open-source development 
platforms and at least 10 years of experience working in the utility industry.  

2. The LFR Team Will Need a Code-Based Development Environment. Most of the 
processes in Transition Period 2 and 3 will require the availability of a code-driven 
development environment in which the more advanced workflows can be developed. 
The timing of the selection and stable implementation of a development environment will 
play a vital role in determining the pace of transition. Likewise, once the new 
development environment is in place, the pace of the transition will depend on the 
growth of the LFR team’s fluency in that environment’s language.  

3. Customer Metering Should be Prioritized. Later periods in the transition roadmap 
include significant development of hourly customer modeling. To enable this, historical 
hourly customer data will be required. LUMA should prioritize beginning the deployment 
of metering (e.g., load research) to a representative sample of customer meters as soon 
as Phase 3 of LUMA’s plan (the complete assessment of data needs) is complete and a 
sample plan developed. 

The remainder of this section is divided into three sections, each one providing additional detail 
regarding the recommended transitions for Processes, Technology, and People. 

5.1  Processes 

Figure 15, below, provides a more detailed map of the transition workstreams for the Processes. 
These all follow the same general structure laid out above: 

• Improve structure of existing workflows in current software.  

• Migrate workflows & improve precision. 

• Automate outputs, integrate workflows, & work to improve. 
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Figure 15. Processes Transition Roadmap 

 

5.1.1 Analytics & Modeling Workflow 

The analytics and modeling workflow refers to the larger process within which each of the more 
specific procedures (demand modeling, uncertainty analysis, etc.) exists. The three key stages 
for this workflow, by Transition Period (TP) (TP1, TP2, TP3), are to: 

1. TP1: Refactor existing workflows. The existing Excel workbooks that together 
combine to deliver the Annual Forecast outputs (and Quarterly Updates) are reflective of 
an organic evolution. The logic across them is challenging to follow, and far too many 
manual interventions are required (increasing the potential for error). The LFR team 
should adopt a consistent set of Excel development leading practices and apply these to 
a reorganized set of workbooks. As existing workflows are refactored existing 
procedures and documentation should be updated to reflect any changes applied and 
the new file structure.  

2. TP2: Migrate workflows to development environment. Adopting a new environment 
for workflows, especially one that requires a transition from mostly point-and-click 
(Excel) to the writing of code (R or Python) can be challenging. To help develop the 
team’s skill with the new platform, the first task should be to transfer over the existing 
workflows to the new environment and test the outputs against those from the old 
environment to ensure alignment. Following replication, the team can begin to expand 
the sophistication of its approach by taking advantage of the more flexible capabilities of 
the new development environment. 
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3. TP3: Finalize workflow protocols & integration.  In the final Transition Period, the 
LFR team should have sufficient experience in the development environment to 
complete the adoption of all modeling or data management requirements noted in the 
other workstreams. In this Transition Period, the LFR team shifts from a core focus on 
development to one of maintenance and continuous improvement. Once processes and 
workflows stabilize, and focus begins to shift to maintenance, a concerted effort must be 
made to document these to ensure transparency and resiliency to personnel changes. 

5.1.2 Input Data Warehousing 

The input data referred to here are the exogenous inputs used to model customer consumption 
and demand (weather, economic factors, load modifiers, etc.). The discussion of the transition 
related to the warehousing of dependent variable data (demand, consumption, etc.) may be 
found in Section 5.2.3 and the discussion of the transition related to the warehousing of output 
data (results, model objects, etc.) may be found in Section 5.1.5. 
 
The three key stages to the development of the input data warehousing are: 
   

1. TP1: Formalize input data structure, development, and chain of custody. Assign 
the collection and processing of inputs to sub-teams with the LFR team, and create a 
central, logical, and transparent file structure with separate but adjacent directories for 
original data inputs (untouched), workbooks that process and prepare the data, final 
outputs required as inputs to the estimation and forecasting process. 

2. TP2: Migrate input data storage to data warehouse. Migrate input data management 
from the structured file management structure to a data warehouse (i.e., a relational 
database) that can be accessed interactively from the new data environment. 

3. TP3: Integrate/Automate warehouse updates to workflows.  Where possible, 
automate input data collection (e.g., web-scraping historic macroeconomic variables) 
and processing tasks to minimize the introduction of errors through user inputs. 

5.1.3 Modeling Approach 

The modeling approach here refers to the estimation of historical relationships to which forecast 
input variables are applied to deliver the base forecast, and the application to this of load 
modifiers, as required or relevant. The three key stages to the development of the modeling 
approach are:   

1. TP1: Build on regression estimation updates & grow in-house modeling 
capabilities. Obtain external assistance to re-estimate the core forecast regression 
models and then learn to use and to update any code developed by the external team 
for monthly consumption estimation. Build on this codebase to develop a customer count 
forecast and transition to a monthly UPC time customer count approach. Test for 
violations of classical Ordinary Least Squares (OLS)58 assumptions and implement error 
correction models Error Connection Models (ECMs) if required. Begin experimenting 
with modeling system peak demand using hourly generation data. 

 
58 Ordinary least squares (OLS) is the standard approach for the estimation of unknown parameters in a linear 
regression model.  
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2. TP2: Begin hourly modeling. Develop robust hourly model for projecting peak demand 
based on hourly generation data. Use research sample hourly metering data to begin 
developing hourly models of customer class consumption. 

3. TP3: Hourly modeling refinement. Transition to hourly UPC of residential and 
commercial customers on the basis of research sample load data. Expand number of 
segments used for residential and commercial sectors to accommodate structural 
changes in customer types (e.g., standard residential customers, EV owners, etc.) 

5.1.4 Uncertainty Analysis 

The uncertainty analysis transition focuses on expanding the capabilities of the LFR team 
beyond a single-point projection of customer class consumption and system peak demand, to a 
workflow that incorporates probabilistic projection and scenario analysis. The three key stages 
to the development of the uncertainty analysis are: 
 

1. TP1: Probabilistic weather & simple scenarios. Enhance the existing forecast 
approach by applying probabilistic weather and develop 2 – 3 simple alternative future 
scenarios to account for different growth pathways in key load modifiers. Plan out 
application of probabilistic weather techniques to hourly generation data modeling. 

2. TP2: Test hourly weather uncertainty & expand scenarios. Implement hourly 
probabilistic projected weather for modeling hourly system demand based on generation 
data. Expand scope of long-term scenarios, considering alternative interactions of 
drivers (e.g., growth in rooftop solar PV with little EV adoption). 

3. TP3: Full hourly weather uncertainty & flexible scenario response.  Finalize hourly 
weather probabilistic projection for application to hourly UPC modeling. Put in place 
input forms and code mechanics such that new scenarios can be specified, run, and 
outputs shared on a very short turn-around time to provide greater analytic flexibility to 
LUMA management. 

5.1.5 Performance Monitoring & Output Data Warehousing 

Monitoring the accuracy of historical forecasts compared to observed actuals and identifying the 
drivers of forecast error are essential for ongoing improvement in forecast performance. All 
model outputs (forecast values, estimated parameters, etc.) must be preserved and 
warehoused such that they continue to be available as needed. Similarly, a posture of 
“defensive” and ongoing QC of code and outputs will minimize preventable errors. The three key 
stages to the development of performance monitoring are: 
 

1. TP1: Develop QC protocols & track performance. Based on the refactored workflow, 
create a set of QC outputs (sum checks, etc.) that can be output for each data 
processing step to ensure any errors are caught before they can propagate. Preserve 
historical forecasts and compare to observed actuals and implement semi-annual or 
quarterly backcasting. 

2. TP2: Begin to automate QC outputs & warehousing of output data and historical 
forecasts. With the workflow migrated to the new development environment, automate 
the output of QC checks in the form of simple scalar checks, interim output summary 
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tables and plots of values. Automate storage of output forecasts to a data warehouse 
and the development of comparison metrics and plots (e.g., for backcast values) for 
performance monitoring. 

3. TP3: Continuous improvement – sync QC development with workflow 
development. As workflows become more complex to accommodate hourly modeling 
and greater model granularity, continue to evolve QC checks, and develop an output 
shell of crucial QC checks and performance checks that can be shared up-chain to make 
forecast approvals more efficient. 

5.2 Technology 

Figure 16 provides a more detailed map of the transition workstreams for the Technology 
element. These all follow the same general structure laid out above: 

• Select & procure software. Deploy sample metering.  

• Complete software transition. Expand metering. 

• Automate data management. Expand metering. 

As noted previously, the technology transitions are necessary conditions for the progression of 
the transition of the Processes in Transition Period 2 (using the new development environment) 
and Transition Period 3 (availability of hourly or sub-hourly customer class data from a research 
sample of meters).  

Figure 16. Technology Transition Roadmap 

 

5.2.1 Analytics Development Environment 

The selection and implementation of the development environment is essential to allow the 
development of more sophisticated techniques like ECMs, hourly modeling, and flexible 
scenario analysis.  

The three key stages to the implementation of the analytics development environment are: 
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1. TP1: Select platform & begin deployment. There are substantial collaboration and 
innovation benefits when analytics personnel throughout an organization use the same 
development platform. The LFR team should work through the GC to review the 
candidate platforms and select one (or more59). Procuring a server- or cloud-based 
implementation will require substantial support from IT, and team members should be 
encouraged to obtain local versions (i.e., laptop or desktop installs) as implementation to 
proceeds to help them acclimate. 

2. TP2: Complete deployment & migrate workflows. When IT deployment is complete, 
the LFR team can begin to migrate workflows from Excel or locally-installed versions of 
the software to server- or cloud-based implementation. Version control practices and 
software (e.g., Git) should be implemented, and an informal mentorship and paired 
programming system established to build team capabilities and ensure consistent coding 
practices. Integration with data warehouse (i.e., accessing relational databases directly 
from the development environment) should begin. 

3. TP3: Complete integration with data warehousing. Integration of the development 
environment with data warehousing should be in place to minimize duplicative or 
potentially confusing data storage. Version control should be used by all programmers, 
with alternative branches in place to allow for concurrent development and production 
versions of code. 

5.2.2 Data Collection 

A crucial constraint on load forecasting at LUMA (and PREPA previously) has be the dearth of 
robust metering data of hourly or sub-hourly customer demand. Without widespread AMI, or the 
prospect of any near-term full deployment of such, the establishment and gradual expansion of 
a load research sample of customers equipped with interval meters will be essential to 
supporting the development of hourly customer class-level modeling in the future. 

The transition plan related to the expansion of data collection articulated below is focused on 
improved metering of demand, as is appropriate given the core focus of this work on the 
modeling (and forecasting) of customer demand and energy. The expansion of distribution, 
transmission, and generation asset metering is also important for the purposes of better 
modeling (for example) technical and non-technical losses, and the LFR team should work 
closely with other teams responsible for such metering to integrate such data (as it becomes 
available) into its modeling. 

The three key stages to the implementation of the data collection transition are: 

1. TP1: Identify initial sample & deploy metering. Develop a sample frame of residential 
and commercial customers that can provide a representative sample of customers. 
Over-sampling in some categories or segments (e.g., EV-owning residential customers) 
may be advisable, provided after-the-fact weighting can be applied to ensure sampled 
demands are representative of the residential and commercial customer population. 
Sample selection should take into account (and take advantage of) any other metering 

 
59 In the earlier transition periods, there are significant benefits to using only a single development platform. As 
capabilities develop, however, consideration may be given to adopting a second one where there are identified use-
cases. For example: R is generally preferred for analytics, whereas Python is regarded by some as a more suitable 
platform for developing processes. 
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deployed by other departments (e.g., interval metering of EV TOU rate pilot participants). 
Meter technology selection should investigate the potential deployment of end-use 
monitoring for major uses such as HVAC, water heating, EVs, etc. in addition to whole-
building metering. 

2. TP2: Expand sample & cross-sectional data collection. The load research sample of 
meters should be expanded on an ongoing basis as resources permit to establish a 
robust and representative history of customer hourly data. Additional data collection of 
cross-sectional customer characteristics (review of property assessment data, 
deployment of end-use surveys) should be undertaken to enhance load data collected 
from the sample whole building / major end-use meters. 

3. TP3: Further expand sample & automate data processing. Intake data processing 
and Validation, Editing, and Estimation (VEE) should be automated to allow near-
continuous updates to the demand and energy data warehouse. Expansion of metering 
should continue to help develop a larger, more flexible sample for forward-looking 
analyses. 

5.2.3 Data Storage 

There exist at present multiple streams of data used by (or that may be used by) the LFR team 
for forecast development, including: monthly billed consumption by customer class, hourly 
generation data, and hourly distribution asset data. As load research metering is deployed the 
volume and complexity of these data will increase. To ensure the quality and replicability of the 
LFR team’s work a data warehouse is required to house these. This will likely take the form of a 
relational database. 

The three key stages to the implementation of the data storage transition are: 

1. TP1: Formalize data management structure & review scaled storage solutions. A 
similar approach to that discussed above for analysis input data should be implemented: 
the establishment of logical and well-structured set of input, processing, and output 
directories. This will ensure a robust chain of custody of data and facilitate the delegation 
of data processing activities. In this phase the LFR team should also coordinate with 
other teams involved in the GC to review existing data storage solutions already 
implemented at LUMA (e.g., Oracle) and explore their applicability to this use-case. 
Depending on the limits and costs of any existing in-place solution, LUMA may wish to 
consider additional (particularly cloud-base) solutions (e.g., Snowflake). 

2. TP2: Select & implement scaled storage solution. The scaled data warehouse 
solution should be implemented, and the storage of original (unprocessed) and final 
(processed and “cleaned”) data migrated to it. Data processing (e.g., VEE) should be 
applied within this solution to make scaling data volumes straightforward as more meter 
data accrue. 

3. TP3: Automate intake and processing. Inputs from metering or data collection to the 
storage solution should be automated, and VEE applied in an automatic or scheduled 
manner. Automated procedures should output plots and tables of summary statistics to 
provide up-to-date quality monitoring and assurance. 
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5.3 People 

Figure 17, below, provides a more detailed map of the transition workstreams for the People 
element. These all follow the same general structure laid out above: 

• Hire team members, improve documentation, & formalize structures.  

• Invest in training & evolve governance in sync with workflows. 

• Refine, improve, & plan for the future. 

As noted in the introduction to this section, engaging an experienced person with formal training 
in econometrics and data science, and a history of developing long-term forecasts is a 
necessary condition for the longer-term development. Hiring such an individual to support the 
existing LFR team lead as a technical lead is essential for helping to direct the development laid 
out in this transition map, and to expand the capacity of the existing team (and any newer hires) 
to manage the new process and technologies. 

Figure 17. People Transition Roadmap 

 

5.3.1 Staffing & Culture 

The LFR team requires additional members and the opportunity to train itself in the techniques 
and tools that will be required going forward. As the team grows, establishing lines of 
responsibility in a formal manner will become more important to ensuring there are no gaps in 
the process, and to enable the formation of cross-departmental working groups capable of 
collaborating on mutual problems. Such mutual assistance across teams is important for 
continuing to grow a shared work culture and establishing the kind of institutional memory that 
allows the teams to continuously build on the achievements of their predecessors. 

The three key stages to the implementation of the people and culture transition are: 

1. TP1: Hire personnel & create task-based cells. Establish a skills matrix for existing 
team members and identify gaps. Hire a technical lead to act as change champion within 
the team and assist team lead with transition activities. Hire support personnel with the 
appropriate skills and create cells (sub-teams) that are task-specific – related to both 
maintaining existing required outputs and for building capacity. 
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2. TP2: Training & cross-team collaboration (working groups). Identify tasks where 
substantial interactions with other departments and teams are present (e.g., distribution 
asset data processing, peak demand estimation, load modifier data processing) and 
encourage the creation of cross-team working groups to ensure consistency in data 
processing, providing opportunities for collaboration. Provide team members (new and 
existing) with self-directed training opportunities (e.g., via Datacamp) as well as more 
formal courseware. 

3. TP3: Continuous improvement & succession planning. Cross-team working groups 
should be encouraged to continue to innovate and resources should be made available 
to support their development of papers and presentations for conferences  to incentive 
development. Team and task leads should engage in succession and contingency 
planning to ensure the ongoing continuity of the team and its outputs. 

5.3.2 Governance Structure & Accountability 

As the LUMA LFR team’s methods and tools evolve and change – potentially quite rapidly – a 
robust governance structure and methodological transparency will be vital to foster internal and 
external institutional trust in the team and its outputs. The application of escalating sign-offs, 
supported by a standard catalogue of supporting quality checks and technical documentation 
can help to ensure consistency of forecast outputs (and assumptions) within the organization, 
and faith in the mechanics driven by external stakeholders. 

The three key stages to the implementation of the governance structure and accountability 
transition are: 

1. TP1: Establish sign-off escalation requirements & methods documentation. The 
creation of formal QC check-lists and output values, tables, and plots should culminate 
in the development of an internal QC document submitted to the VP Regulatory along 
with final forecast values and other reporting. As approach development stabilizes 
following workflow refactoring LFR team should also develop an outward-facing methods 
document describing its approach. While such documentation doesn’t require the 
mechanical detail of a Procedure, it should be sufficiently detailed to allow reviewers 
(assuming access to the data) to approximately replicate the LFR’s approach and 
outputs. 

2. TP2: Sync sign-offs with workflow migration. As the refactored workflow is migrated 
to the new development environment and additional analyses undertaken, the sign-off 
tracking document must change accordingly. On-going updates should also be made to 
the methods documents, including data output appendices (where relevant or 
appropriate) that demonstrate a link between the team’s performance monitoring and the 
evolution of its approaches. 

3. TP3: Continuous improvement & refinement of process. As workflows in the new 
development platform begin to stabilize and move toward greater refinement and 
granularity, sign-off support documentation should continue to evolve based on lessons 
learned and shifting priorities. The presentation of key elements of the sign-off document 
contents to the GC at periodic intervals may provide opportunities for greater integration 
and collaboration across teams. 
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Appendix A. Future Methods – Additional Detail & Examples 

The purpose of this appendix is to provide additional detail and examples regarding the 
recommended future methods. It follows the same format as Section 4 and is divided into three 
sections: Processes, Technology, and People. 

A.1 Processes 

This section of Appendix   is divided into two sub-sections, expanding on the corresponding 
sub-sections of Section 4: 

• Load Modeling 

• Uncertainty Analysis 

A.1.1 Load Modeling 

LUMA’s LFR team should adopt an approach of modeling future consumption and demand 
through the use of a combined UPC and customer count forecast approach for residential 
customers, all but the very largest commercial customers, and all small and medium industrial 
customers. As noted in the transition roadmap (Section 5) this can start on the basis of monthly 
UPC, but in the longer term the LFR team should migrate to modeling hourly UPC. 

In most contemporary applications of this approach the UPC projected is quite coarse – a 
monthly or annual value. LUMA’s long-term development of future methods should target a 
much higher frequency output – an 8,760, or hourly profile of average use per customer, by 
year, using future interval data from AMI and/or load research samples.60 This level of temporal 
granularity provides significant benefits: 

• Peak Demand and Energy Forecasting Integration. Forecasting on an hourly basis 
makes it possible to use the same modeling framework for forecasting peak demand and 
energy consumption. Peak demand and energy forecasts may require different forecast 
inputs (e.g., 1-in-2/50-th percentile “normal” weather for the energy forecast, and 1-in-
20/95th percentile extreme weather for the demand forecast), but can use the same 
estimated parameters (relationships). As noted in the main body of the report, 
Guidehouse believes it unlikely that hourly customer level data alone will be sufficient to 
deliver a robust projection of class-level peak demand, but may be so when calibrated to 
a forecast of system peak demand estimated on the basis of hourly generation data (for 
which significant history already exists). 

• Peak Migration. Identifying the impact of load modifiers (e.g., distributed generation, 
energy efficiency, etc.) in the forecast can be confounded when the magnitude of their 
effect is sufficient to impact the timing of system peak hours. The “duck curve” effect of 

 
60 Given that the development of an 8,760 forecast based on meter data will require at least a few years of history 
from some sample of customer meters, Guidehouse anticipates that input hourly data will need to be derived from a 
load research sample. The ability of the LFR team to output such a forecast will therefore be dependent on the 
funding and deployment of a load research sample set of meters promptly following the LUMA’s completion of the 
assessment of its data needs and the development of a robust sampling plan approved by the load forecasting 
Governance Committee. Depending on the progress of such data collection directly modeling 8,760 customer 
demand based on customer meter data may require more than the 10 year period covered by this report. 
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behind-the-meter solar PV may mean that the expected peak reduction value of some  
DSM programs may be eroded. Hourly granularity is essential for tracking intra-daily 
peak migrations. 

• Rate-Setting. The ability to generate accurate hourly forecasts for specific sub-groups of 
customers is important for allowing rate designers to develop equitable rates that 
adequately recover the costs that groups of customers impose on the system, and 
reduce any undesirable and unintentional subsidization across tariff classes. 

The specific technique to be applied by the LUMA LFR team to forecast the number of 
customers in each segment or group of interest, and the UPC profile will need to be determined 
as more data become available, and the LUMA LFR team’s tools and analysis become more 
sophisticated. The specifics are likely to vary considerably also by customer type. 

Sacramento Municipal Utility District (SMUD)61, for example, forecasts residential customer as a 
function of population and commercial customer growth as a function of economic drivers such 
as employment and gross county product. Avista, in contrast, uses pure time-series Auto-
Regressive Integrated Moving Average (ARIMA) approaches for projecting residential customer 
numbers, and simple smoothing or trend models for other classes  

In line with Principle 1, however, Guidehouse would recommend an approach more aligned with 
that of the SMUD example: one in which the customer count is forecast as a function of some 
clearly causal input. This would likely be enhanced, or adjusted, based on (for example) the 
outputs of EV adoption models or projections of migrations from standard flat rates to time-
varying rates prepared by other teams within LUMA. 

The UPC forecast too may be derived in a variety of ways. PG&E uses econometric error 
correction models (linear regression enhanced via time-series modeling of residuals to correct 
for serial correlation), whereas PacifiCorp62 uses a Statistically Enhanced End-use (SAE) 
model. FortisBC63 simply carries forward a ten-year linear trend to forecast residential UPC.  

A.1.2 Uncertainty Analysis 

The expanded discussion of uncertainty analysis here is further divided into a discussion of 
scenario analysis, and probabilistic analysis. 

Scenario Analysis 

The discussion of uncertainty analysis in Section 4.2.1.2 provides one concrete example of the 
use of scenario analysis in utility long-term load forecasting. An additional example and 
discussion of this approach is provided here. 

In addition to FortisBC, Salt River Project64 offers an excellent example of the way scenarios 
can be used to articulate different potential future worlds, and so understand the potential 

 
61 SMUD, Resource Planning Report, April 2019 
62 PacifiCorp, 2021 Integrated Resource Plan – Volume II, September 2021. 
63 FortisBC Inc., 2021 Long-Term Electric Resource Plan – Volume 1, August 2021. 
64 Salt River Project, Integrated Resource Plan Report 2017 – 2018, 2018.  

SRP has published annual updates to this plan since its issuance (every February) and is due to publish the next full 
plan in November of 2022. 



 
Regulatory Long-Term Load Forecast Review 

 

  

 Page A-3 
 

 

consequences for forecast consumption and demand. Scenarios developed for System 
Remediation Plan (SRP’s) 2017/2018 IRP include: 

• “Breakthrough” which imagines continued high growth in customer numbers and 
consumption, price stability for input fuels, and substantially reduced costs for DERs. 

• “Roller Coaster” which imagines increased economic volatility driving cyclic shifts in 
demand, historic input fuel price volatility, and no meaningful or sustained reductions in 
DER costs 

• “Desert Contraction” which imagines a decaying load factor and reduced growth, 
primarily motivated by the acute impacts of climate change in the U.S. Southwest. 

Figure 18. SRP's IRP Scenario Consumption & Corresponding Resource Mix 

 

Source: SRP 

One great advantage of incorporating scenario analysis into the overall forecast workflow – and 
developing that workflow such that new scenarios are straightforward and quick to run – is to 
provide external stakeholders with a better understanding of the materiality of any 
disagreements they may have about core assumptions. For example, if the reference forecast 
and principal scenarios assume fewer EVs than a key stakeholder believes are appropriate, 
flexible scenario outputs can help reassure that stakeholder by helping them understand what 
the impact would be of their more aggressive assumptions. 

For example, a key element of FortisBC’s scenario outputs was the development of a simplified 
web-based output tool that allows stakeholders to approximately identify the effect when 
alternative values are adopted for the most crucial inputs defining the scenario outcomes. 
Stakeholders were provided with a tool to help them understand the potential implications of 
scenarios of individual interest that were not adopted as part of the consensus of the advisory 
group that drove this process.  

Probabilistic Analysis 

Probabilistic approaches are important for forecasting load in high frequency (e.g., hourly) 
forecasts, where the use of average weather will understate weather-related swings in load due 
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the way that averaging flattens the random day-to-day variation in temperatures. It is for this 
reason, for example, that Detroit Edison Gas Company (DTE’s)65 natural gas sales forecast 
converts monthly weather normal into a daily series that reflects intramonthly temperature 
volatility – in that case the intramonthly temperature volatility is critical for capturing the 
nonlinear impacts on gas demand when temperatures cross certain key thresholds. 

The recommendation in the main body of the report is that LUMA consider the use of a 
probabilistic approach to weather estimation similar to that used by the IESO or ERCOT. A 
more detailed description of the IESO approach that maps historical weather to the regression-
estimated parameters is presented below as an illustration of the approach. 

• The weather for each July day over the past 31 years is applied to the corresponding 
regression parameters.  

• This delivers 31 sets (for 31 years) of 31 (days in July) demand values. 

• For each year, the weather that delivers the peak weather-attributable demand in that 
month/year combination is selected. 

• This then delivers a distribution of 31 sets of peak demand-driving weather in July. 

A tabular example of this process is presented in Figure 19. 

Figure 19. IESO Example: Creating Monthly Normal (50th Percentile) Weather 

 

Source: IESO66 

Probabilistic modeling of load growth using a pure time-series (without causal elements) may be 
used (for example by Central Hudson) to create a probabilistic forecast of demand through the 
application of Monte Carlo simulation. Such cause-agnostic approaches are, however, 
unsuitable for the long-term forecast and would violate Principle 1. Figure 20 is an example 
illustrating the outcome of 50 simulations undertaken for Central Hudson – as may be seen by 

 
65 DTE Gas Company, Qualifications and Direct Testimony of George H. Chapel, [rate case before the Michigan 
Public Service Commission],Case No. U-20642, November 2019 
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the random track of each simulation, these are all clearly cause-agnostic (not suitable for 
LUMA’s long-term forecast). 

Figure 20. Example of Pure Time-Series Probabilistic Load Growth 

 

Source: Central Hudson Marginal Cost Study 

Monte Carlo simulation can be used to motivate weather-driven distributions, as Guidehouse 
has done previously in assisting Enbridge Gas Distribution with defining its 95th percentile 
natural gas design day. Typically, a Monte Carlo simulation involves applying a series of 
random shocks to an estimated regression model, iterating through a large number of random 
draws to develop a distribution of outputs. 

The challenge of such Monte Carlo approaches, however, is that they require strong structural 
assumptions regarding the error term. Some distribution (or more accurately distributions) from 
which random shocks are drawn must be defined, and the persistence of the shock through the 
system accurately modeled. Monte Carlo approaches can become particularly challenging when 
random shocks are driven by more than one input variable as they often may be when applied 
to weather. For example, if substantial rooftop PV generation has been adopted, the forecast 
net load will be a function of both temperature and cloud cover. It seems probable that these 
two random variables are not wholly independent, but modeling the distribution of joint 
probability would likely be very challenging, both for LUMA personnel and for external 
reviewers. 

The short-coming of probabilistic approaches based on historical weather (either the use of 
observed distributions, or the simulation of such via Monte Carlo techniques) is that being tied 
directly to historical weather values, they may fail to accurately capture future extreme weather 
events. The consensus from climate scientists67 appears to be that climate change is resulting 
in an increase in the severity and frequency of such events. Given that such events would be 
(definitionally) outside the historical record, Guidehouse anticipates that the sensitivity of 
forecast values to such events are most appropriately addressed in scenario analysis (see 
below) rather than via a probabilistic approach. 

 
67 For example the reporting of Intergovernmental Panel on Climate Change (IPCC). 
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The use of historical weather as a tool for simulation and probabilistic forecasting would require 
adaptation to the unique features of the forecast methods and data adopted by the LUMA LFR 
in the long term, and the IESO example presented above should be understood to be 
illustrative. 

Other variations68 on this approach include using historical hourly weather patterns, iteratively 
applied to model parameters through incremental day offsets, backward and forward. This 
variation is another way to allow for the fact that (for example) the historical weather that might 
be expected to drive peak demand was observed on a weekend rather than a weekday. 

Ultimately the LUMA LFR team should, in its future methods, have the ability to (at minimum) 
explore the distribution of potential forecast outcomes based on the expected volatility of 
temperature and humidity using some adaptation of one of the methods identified above. 

Probabilistic techniques are best suited to understanding the scope of uncertainty related to 
high frequency quasi-random inputs to the forecast with historical precedent (particularly 
weather). Such techniques are more difficult to effectively employ when quantifying the longer-
term uncertainty associated with changes in major structural drivers of load growth and patterns, 
particularly those without significant historical precedent and substantially affected by public 
policy (e.g., Distributed Energy Resources (DER), EVs, etc.) 

A.2 Technology 

This section of Appendix A is divided into two sub-sections, expanding on the corresponding 
sub-sections of Section 4: 

• Analytics 

• Data Collection 

A.2.1 Analytics 

In the main body of this report, Guidehouse recommends that LUMA (and the LFR team in 
particular) adopt an open-source development environment as a platform for load forecasting 
and other analytics. Open-source programing environments tend to be more flexible, more 
geared toward paired programming and other multi-user collaboration, less costly to implement, 
and – significantly – much easier to staff. As noted in the main body of this report, the 
dominance of open-source languages in academic environments means that most Master’s or 
PhD graduates from an economics, statistics, or data science program that have used code-
based analytics in their program will already have some level of competence in one of these 
environments. 

Proprietary platforms, and purpose-built forecasting software, however, remains popular in 
many utility settings, typically for legacy reasons. This section of Appendix A will provide a bit of 
additional context on some of these options to provide LUMA with a more complete picture of 
what’s available. 

 
68 Guidehouse staff have previously implemented a variation of this approach for the development of a 20-year hourly 
load forecast for a very large North American municipal electricity distribution utility in 2018. 
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This will begin with a description of generalized, highly flexible platforms (where considerable 
development would be required of the LFR team to develop models and workflows), identify 
some of the more “ready-to-wear” options available, and conclude with references to solutions 
offered by some newer firms that appear to amount to the outsourcing of forecast development. 
The point here is not to provide a comprehensive list69 of programs but to identify the continuum 
along which such solutions exist.70 

Open-source environments such as R and Python have already been recommended in the main 
body of the report and are not discussed here. 

Proprietary environments, such as SAS or MATLAB software may be simpler than an open-
source environment to get set up (e.g., require fewer LUMA IT personnel to support), though 
new, younger econometricians and data scientists are less likely to be conversant in these than 
the open-source options. SAS, although also a more general coding platform used by many 
different sectors appears to offer energy-sector-analytics packages.71 

More specialized load forecasting software may also be adopted, though such software is often 
required in addition to (rather than instead of) the more flexible environments cited above. The 
most common72 specialized software used for long- and medium-term load forecasting73 at the 
system level is Itron’s MetrixND and MetrixLT family of products. 

The characteristic feature of these products is the use of SAE regression modeling. SAE models 
are very typically quite simple regression models (with only a few independent variables), but 
with complex “bottom-up”-style indexes as independent variables. Ameren Missouri’s IRP74 
(Section 3.1.5) includes a clear algebraic and verbal description of the modeling approach. One 
very important consideration for the use of this kind of model is the level of detailed data 
required as inputs: SAE model indexes are typically functions of appliance efficiency levels and 
saturation as well as (in the case of the Ameren example) customer price and income 

 
69 A good reference list of commercial load forecasting software (though biased to distribution planning rather than 
system-level long-term forecasting) may be found in Section 5 of this EPRI paper: 

Electric Power Research Institute; Olearczyk, M. Load Forecasting for Modern Distribution Systems, Technical 
Update, March 2013 1024377 
70 That said, it should be noted that the programs reference in the text below are the most common ones Guidehouse 
has observed being used by forecasting departments of utilities, through previous work in benchmarking electricity 
and gas forecast approaches for other clients. 
71 See, for example 

SAS, SAS Energy Forecasting, accessed May 2022 

https://www.sas.com/en_us/software/energy-
forecasting.html#:~:text=SAS%20Energy%20Forecasting%20has%20been,at%20any%20level%20of%20aggregatio
n.  
72 Guidehouse is unaware of any formal survey efforts that have documented the forecasting tools used by electricity 
and natural gas utilities in North America, but has extensive experience working with (or adjacent to) load forecasting 
teams in many distribution utilities. Guidehouse has also, additionally, undertaken several benchmarking efforts to 
assist clients better understand how aligned their approach is with existing industry common practice. Based on this 
work, Guidehouse would estimate that between 10 to 25% of the distribution utilities that generate long-term 
forecasts do so using the MetrixND and MetrixLT family of Itron products.  
73 This is in reference to the type of load forecasting performed by the LFR team, and not distribution planning or 
shorter-term projections of generation used by system operations. 
74 Ameren Missouri, Integrated Resource Plan – Section 3: Load Analysis and Forecasting, accessed May 2022 

https://www.ameren.com/missouri/company/environment-and-sustainability/integrated-resource-plan  

https://www.sas.com/en_us/software/energy-forecasting.html#:~:text=SAS%20Energy%20Forecasting%20has%20been,at%20any%20level%20of%20aggregation
https://www.sas.com/en_us/software/energy-forecasting.html#:~:text=SAS%20Energy%20Forecasting%20has%20been,at%20any%20level%20of%20aggregation
https://www.sas.com/en_us/software/energy-forecasting.html#:~:text=SAS%20Energy%20Forecasting%20has%20been,at%20any%20level%20of%20aggregation
https://www.ameren.com/missouri/company/environment-and-sustainability/integrated-resource-plan
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elasticities. Obtaining input historical (and forecast) values of such variables may be 
challenging. 

Another example worth highlighting in this discussion is that the approach used by PJM, the 
Regional Transmission Organization (RTO). PJM forecasts UPC with SAE models,75 and 
though it contracts with Itron for input data and uses MetrixND for some modeling, it uses SAS 
as its broader analytics and forecasting development environment. As per a 2018 presentation 
by the RTO76: “Some modeling is done with Itron’s MetrixND software; forecast production is 
done with SAS software.”  

The use of open-source software provides the greatest flexibility to the LFR team in developing 
its forecast workflow, but also requires greater development of internal IT capabilities. 
Proprietary tools like SAS may be simpler to implement (i.e., can be contracted from the vendor) 
but will be more costly and may be more challenging to staff (given the smaller base of existing 
coders). More specialized software (like MetrixND or MetrixLT) can provide a nearly “ready-to-
wear” solution that may be simpler to use and will reduce the amount of model testing and 
development required of the LFR team, but such solutions may require inputs not easily 
accessible, and must be implemented in addition to another code-based analytics platform (like 
SAS, R, Python, etc.) 

At the far end of this continuum of possible solutions lies the possibility of complete out-
sourcing. SAS and Itron offer forecasting services to accompany their products, and there 
appear to be an increasing number of firms offering their services for integrated load 
forecasting. These include professional services consulting firms (that use many of the tools 
identified above) and, increasingly, firms offering newly created software solutions77 specific to 
load forecasting and some of its more recent challenges (e.g., DERs) and opportunities (e.g., 
AMI adoption). 

The Guidehouse staff responsible for drafting this report is not familiar with any distribution 
utilities that have, to date, fully adopted such outsourcing, and Guidehouse would strongly 
caution LUMA against any services or software presented as “turnkey” or “pushbutton” solutions 
as these are unlikely to be able to provide the long-term stability and resilience of solutions 
developed “in-house” supplemented with outside expertise as required. 

A.2.2 Data Collection 

Section 4.2.2.2 in the main body of the report identifies the importance of developing a load 
research sample to which high frequency interval meters may be deployed in order to develop 
sufficient hourly customer data to begin projecting UPC at the hourly level. This section of 
Appendix A provides some additional recommendations and discussion of how other data 
collection activities may supplement this sample metering. 

 
75 Resource Adequacy Department, PJM, Load Forecasting Model Whitepaper, April 2016 

https://www.pjm.com/~/media/library/reports-notices/load-forecast/2016-load-forecast-whitepaper.ashx  
76 John Reynolds, PJM, PJM Load Forecasting: Past Present, Future Outage Management System (OMS) Load 
Forecasting Workshop, May 2018 

http://www.misostates.org/images/stories/meetings/2018_Forecasting_Workshop/02c_RTO-Panel---Reynolds.pdf  
77 See for example, Recurve’s “Resource Planner” offering 

https://www.recurve.com/products#resource-planner  

https://www.pjm.com/~/media/library/reports-notices/load-forecast/2016-load-forecast-whitepaper.ashx
http://www.misostates.org/images/stories/meetings/2018_Forecasting_Workshop/02c_RTO-Panel---Reynolds.pdf
https://www.recurve.com/products#resource-planner
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Meta-data for the load research sample meter data should include information about building 
occupancy obtained from billing records: that is, it is important that in the hourly or sub-hourly 
data collected from this sample that analysts can identify when building occupants (the 
customer) changes. Demand data from this metering should be supplemented by (and 
connected to) customer survey data. 

Commercial and residential end-use surveys are instruments commonly used by jurisdictional 
authorities to gather important customer information that can be used for a variety of analyses, 
including energy efficiency potential studies, and to inform DSM program planning.78 If similar 
surveys were to be deployed in Puerto Rico (e.g., for an EE or DR baseline study), there exists 
an opportunity to deliberately over-sample (obtaining as close to a census as possible) the load 
research group.  

If survey data can be linked to load data for such a sample, it greatly increases the possibilities 
for UPC customer profile modeling and also allows the LFR team to confirm the 
representativeness of the sample by comparing survey responses within the load research 
sample, to those of the wider group of respondents (not included in the load research sample). 

Finally, efforts should be made in collecting interval data from the meters of the load research 
sample, to take advantage of distribution asset data, any existing customer billing-to-station 
mapping (if it is accurate), customer billing data, and other customer survey data to try to 
extrapolate the UPC profiles of the load research sample. The importance of this kind of 
estimation or extrapolation is in establishing workflows and processes that make use of high-
frequency, geographically-granular, customer data such that when AMI data do begin to 
become available, there is an analytical framework already established that makes use of such 
data.  

Put another way: high-frequency UPC forecast profiles by customer type should be estimated 
with geographic specificity, even when the available data are so limited (e.g., limited load 
research sample data, partial distribution asset load data, customer billing data with known 
limitations) that the geographic precision may be spurious. So long as the limitations of the input 
data are well understood, then their use as place-holders will significantly improve the pace at 
which the LFR team (and other associated LUMA teams) can take advantage of more 
comprehensive hourly or sub-hourly customer metering data, as they become available. 

A.3 People 

This section of Appendix A is divided into two sub-sections, expanding on the corresponding 
sub-sections of Section 4: 

• Team Structure, Collaboration, and Culture 

• Documentation 

 
78 The California Energy Commission will, for example, publish the results of its Commercial End-Use Survey (CEUS) 
in September of 2022. 

https://www.energy.ca.gov/data-reports/surveys/california-commercial-end-use-survey  

The CEC has previously (in 2021) published its 2019 California Residential Appliance Saturation Study (RASS) 

https://www.energy.ca.gov/publications/2021/2019-california-residential-appliance-saturation-study-rass  

https://www.energy.ca.gov/data-reports/surveys/california-commercial-end-use-survey
https://www.energy.ca.gov/publications/2021/2019-california-residential-appliance-saturation-study-rass
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A.3.1 Team Structure, Collaboration, and Culture 

In Section 4.2.3.2, the Guidehouse team presented some recommendations for team structure 
and collaboration. This part of Appendix A expands on these recommendations, identifying 
additional management practices that help ensure team resiliency and continuity. 

The rotation of the junior team members across tasks – even tasks for which they have no 
academic training – is vital to develop in personnel the breadth of skills necessary to ensure that 
team output is resilient to staffing disruptions. Part of this rotation of junior team members 
should include their secondment (or partial secondment) to other teams – for example 
distribution planning or even the IT team tasked with maintaining the servers and other IT 
resources used by the LFR team (data warehouses, analytic software servers, etc.) 

This practice will enable junior team members to better understand the needs of other teams, 
help to propagate best practices, and provide them with an invaluable internal network of 
colleagues they can trust and work together with as they become more senior. As the team 
becomes more dependent on server- or cloud-based applications and data, management 
should push the LFR team to work closely with IT personnel so that the LFR team better 
understand the possibilities (and the limitations) of the resources they will share. When the 
analytics team and the IT team can speak the same “language”, resource acquisition and 
maintenance will become more efficient and down-time due to server issues will be reduced.  

Management may explicitly encourage and incentivize cross-team (and intra-team) collaboration 
and collaborative culture by establishing a regular series of inter-team workshops and 
encouraging (and providing resources and time) team members to develop internal 
presentations on findings, updates, and innovations under development. Such presentations are 
multi-purpose: they socialize emerging techniques across teams, encourage informal cross-
team interactions and network development, and provide valuable multi-disciplinary quality 
review. 

Participation in such efforts can be incented through a commitment from management to the 
development of outward facing thought leadership by the teams via conference attendance and 
presentations. Inter-team presentations such as those described above can provide useful 
testing grounds for thought leadership content that may submitted to such conferences. The 
prospect of attending and presenting at such conferences with funding from LUMA will 
incentivize personnel to innovate and (perhaps most importantly) document and share their 
innovations and findings, to the benefit of their team and others. 

A.3.2 Documentation 

In Section 4.2.3.2 the Guidehouse team made some specific recommendations for the 
development of output documentation for internal reporting. One of these was the 
recommendation that the LFR team produce and internally publish documentation providing the 
technical details of the overall forecast development process, including the motivation for 
specific modeling decisions. 

Such  documentation is important for two reasons: firstly, it enforces accountability and rigor. 
When analysts are required to explain their approaches to an internal forum like the LUMA Load 
Forecasting GC, it concentrates their focus and provides a powerful disincentive to “patchwork” 
style workarounds and adjustments. When deadlines press, and outputs are required, but 
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counter-intuitive patterns in such outputs are present there can be the temptation for analysts to 
make ad hoc “patch” adjustments to correct an input they believe flawed. 

Over time, such patches can accrete, complicate workflows and make them more susceptible to 
error and propagation of error. When an understanding exists that the analyst will need to 
document their change, justify it, and potentially respond to feedback (from members of the GC 
in this case), such changes are often applied more judiciously, and tracked more carefully going 
forward. 

The second reason such documentation is important is that the transparency it provides help to 
build the confidence and trust of the LUMA LFR team’s internal stakeholders – in the quality of 
the work and the care and thoughtfulness with which it is produced. This can help reduce costs 
incurred due to duplicative . 

In addition to providing a reference for internal stakeholders, documentation may be helpful as 
the basis for a periodic benchmarking of LUMA’s approach against industry current practice. In 
the longer term, once the forecasting approach has matured and is aligned with the future 
methods articulated above in the “Process” section, it would be prudent for LUMA to undertake 
(or procure from a third party) a review of the professional literature (perhaps supplemented with 
interviews of forecasting practitioners) output by peer utilities. Such reviews can be helpful in 
understanding where additional progress may be advisable, and can help contextualize the 
approaches used by LUMA to its stakeholders and regulator. 

Finally, such documentation may provide  important contextual information  to third parties 
contracted by LUMA to perform periodic audits of load forecasting processes. Such audits are 
important to ensure the continued adherence to modeling practices put in place as part of any 
improvement activities and the alignment between the descriptions of processes and workflows 
provided in documentation with those processes and workflows as they are actually practiced. 


