NEPR

GOVERNMENT OF PUERTO RICO PUERTO RICO PUBLIC SERVICE REGULATORY BOARD PUERTO RICO ENERGY BUREAU

Received:

Sep 9, 2024

5:30 PM

IN RE: PLAN PRIORITARIO PARA LA ESTABILIZACIÓN DE LA RED ELÉCTRICA

Case No.: NEPR-MI-2024-0005

Motion in Compliance with Resolution and Order of August 9, 2024

MOTION IN COMPLIANCE WITH RESOLUTION AND ORDER OF AUGUST 9, 2024

TO THE ENERGY BUREAU:

COMES NOW, GENERA PR, LLC ("Genera"), through its undersigned counsel and, very respectfully, states and prays as follows:

1. On June 13, 2024, the Puerto Rico Energy Bureau ("PREB") issued a *Resolution and Order* instructing the Puerto Rico Electric Power Authority ("PREPA"), LUMA Energy, LLC and Luma Energy ServCo, LLC ("LUMA"), and Genera PR LLC ("Genera"), to elaborate and present to the PREB their respective Electric System Stabilization Plans ("Preliminary Plan"). Genera presented its *Preliminary Plan* on July 8, 2024.

2. On August 9, 2024, PREB issued another Resolution and Order titled *Establishment of Procedural Calendar*, setting forth a work schedule in the present case ("*Scheduling Order*"). The *Scheduling Order* requires Genera, Luma and PREPA to file their respective presentations for the Virtual Technical Workshop by the deadline of September 9, 2024.¹

¹ The Scheduling Order requires the filing to be made by 2:00 p.m. However, due to the impending termination of the Shared Services Agreement, Genera encountered complications during the current data migration that hindered the compilation of the information necessary for the submission. Genera apologizes for this good faith unintentional delay.

3. In compliance with the *Scheduling Order*, we hereby submit the presentation Genera intends to use during the Virtual Technical Workshop. (Exhibit #1).

WHEREFORE, Genera respectfully requests PREB to take notice of the foregoing, accept the presentation submitted by Genera, and deem it in compliance with the *Resolution and Order* of August 9, 2024.

It is hereby certified that this motion was filed using the electronic filing system of this Energy Bureau, and that electronic copies of this Motion will be notified to the following attorneys who have filed a notice of appearance in this case: Lcdo. Alexis Rivera, <u>arivera@gmlex.net</u>; Lcda. Laura T. Rozas, <u>laura.rozas@us.dlapiper.com</u>; Lcda. Valeria Belvis Aquino, valeria.belvis@us.dlapiper.com.

ROMAN NEGRÓN LAW, PSC

Attorneys for Genera PR, LLC. Citi Towers, Suite 1401 252 Ponce de León Ave. San Juan, PR 00918 P.O. Box 360758 San Juan, PR 00936 Tel. (787) 979-2007

<u>s/Luis R. Román Negrón</u> Luis R. Román Negrón RUA 14,265 <u>lrn@roman-negron.com</u> Exhibit 1

Electric System Stabilization Plan - Virtual Technical Workshop

Electric System Stabilization Plan

Virtual Technical Worksho NEPRMI20240005

September 11, 2024

Electric System Components

GenCo

Responsibilities

- O&M PREPA Legacy Gen Assets
- Decommissioning
- Savings
 Opportunities

GridCo

PREPA Hydro Co

Responsibilities

- O&M T & D
- Customer
- Services
- Energy Dispatch

CONTENT

Work Plan to Improve Reliability

III 2024 – 2026 Performance Goals

Capacity and Reliability Improvement Plan

2	So
6	

Short-term Repairs

- Repairs to restore **800 MW of capacity** between Sep & Nov 2024
- Repairs to restore 500 MW of capacity for 2025

Ц

Critical Components Replacement

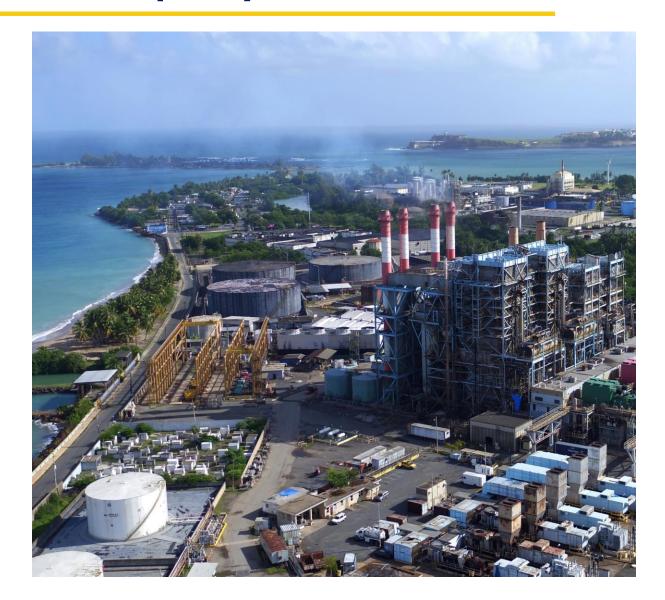
• Reduce Forced Outages in 50%

BESS – Battery Energy Storage System Project

Add 430 MW to prevent 90% of load shedding

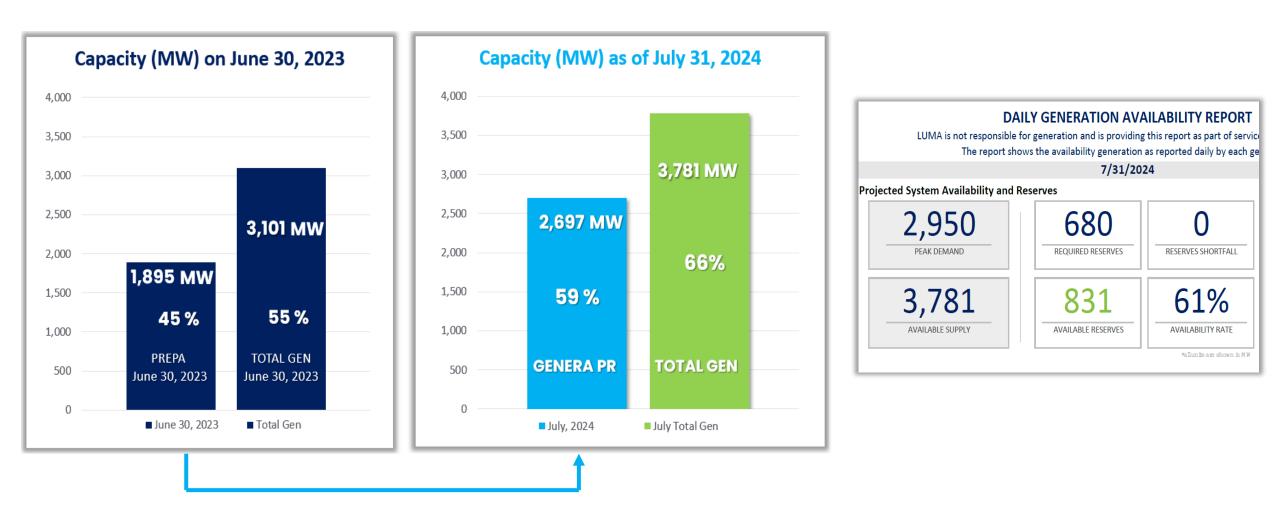
Peaker Project

Add 244 MW of black start and ancillary services


Work Plan To Increase Capacity

RECOMMENDED CAPACITY

- Capacity Increase Goals
- System Required Reserves


PREPA's Generation System as Found on June 30, 2023

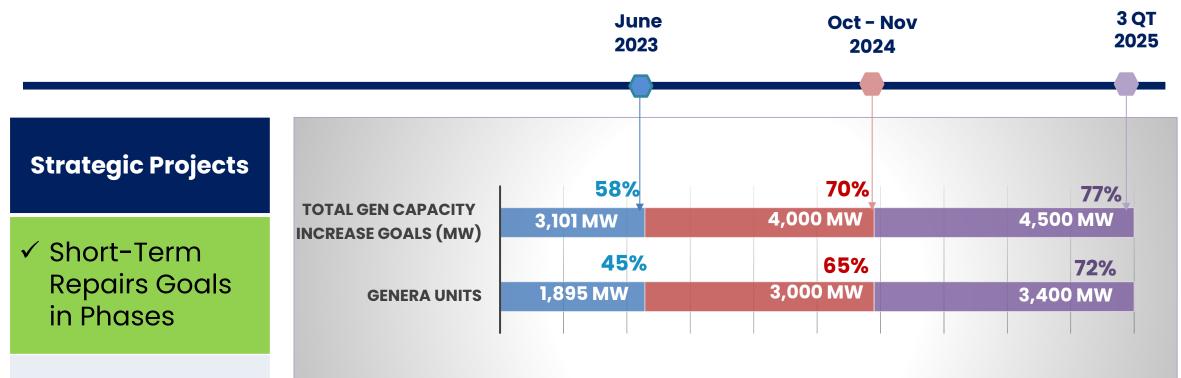
GENERATOR	COD	Nameplate Capacity (MW)	Capacity as of June 30, 23	Notes	Generation Summary	MW	%
Aguirre 1	May 1975	450	0	Under maintenance	,		
Aguirre 2	Oct 1975	450	0	Under repair	PREPA Total Installed	4,165	100%
San Juan 7	May 1965	100	0	Under maintenance	Capacity		
Palo Seco 3	Feb 1970	216	0	Under repair	Available Capacity as of June 30, 2023	1,895	45%
Costa Sur 5	Sep 1972	410	180	In service with limitations	Private Generators	1,058	
Costa Sur 6	Sep 1973	410	317	In service with limitations	Temporary Generation	130	
Palo Seco 4	Jul 1970	216	185	In service with limitations			
Ag CC 1&2	July 1977	592	197	In service with limitations	Hydro Gen	18	
Mayaguez	Apr 2009	220	146	In service with limitations	Total Capacity	3,101 MW	
Cambalache	Apr 1997	165	152	Failures and limitations			
Peakers Fleet	(18) 1971 & (3) 2019	396	197	Failures and limitations	DAILY GENERATION AVAILABILITY REPORT LUMA is not responsible for generation and is providing this report as part of service to our customers. The report shows the availability generation as reported daily by PREPA and other generators. 6/30/2023		
San Juan 5	Oct 2008	220	208	Normal operation	Projected System Availability and Reserves	100 Previo	us Day 6/29/2023
San Juan 6	Oct 2008	220	213	Normal operation	2,680 610 REQUIRED RESERVES		Demand Time: 42 MW 7.51 AM
San Juan 9	June 1968	100	100	Normal operation	3,101 421	57%	Demand Time:
	TOTALS	4,165 MW	1,895 MW	Available Capacity		AVAILABILITY RATE	51 MW 8:24 PM Total Generation 55,668 MWh

2023 - 2024 Phases I of Short-Term Repairs

Phase I- Repairs					
Units Under Repair or Maintenance	Capacity (MW)	Reason Planned or Unplanned	Source of Investment	Expected Completion Date	Status as of Sep 6
San Juan 7	100	FO Gen Rotor Repair	Reserve Account	Q3 2024	In Service June 28
Palo Seco 3	180	Maintenance	NME & FEMA	Q3 2024	In Service June 30
Aguirre 1	60	Limitation	NME	Q3 2024	In Service May 28
TOTAL	330 MW				

2024 - 2025 Phases II & III of Short-Term Repairs

Phase II & III Repairs					
Units Under Repair or Maintenance	Capacity (MW)	Reason Planned or Unplanned	Source of Investment	Expected to be completed	Status as of Sep 6
SJ STG 5	55	FO Repair	Reserve Account	TBD – under assessment	In Service Sep 3
SJ STG 6	55	FO Repair	Reserve Account	TBD –under assessment	In Progress
Aguirre CC 2-1, 2-2	96	FO Transformer replacement	Reserve Account	3Q- 2024	In Progress
Mayaguez 3B	25	FO PT repair	Reserve Account	4Q-2024	In Progress
Aguirre 2	75	Air heater replacement Turbine LP seals	Critical Components	3Q-2025	Procurement
Aguirre 1	75	Air heater replacement Hydrogen leakage repair	Critical Components	3Q-2025	Procurement
Palo Seco 4	185	FO Generator Repair	Reserve Account	4Q-2025	In Progress
Phase II-III Sub-total	566		-		
Aguirre 1*	325	FO - Condensate Pump Repair & FAF	Reserve Account	Sep 11	In Progress
Aguirre 2*	360	FO BFP repair	Reserve Account	October - Nov	Procurement
SJ CTG 6*	155	FO Excitation system repair	Reserve Account	TBD – under assessment	In Progress

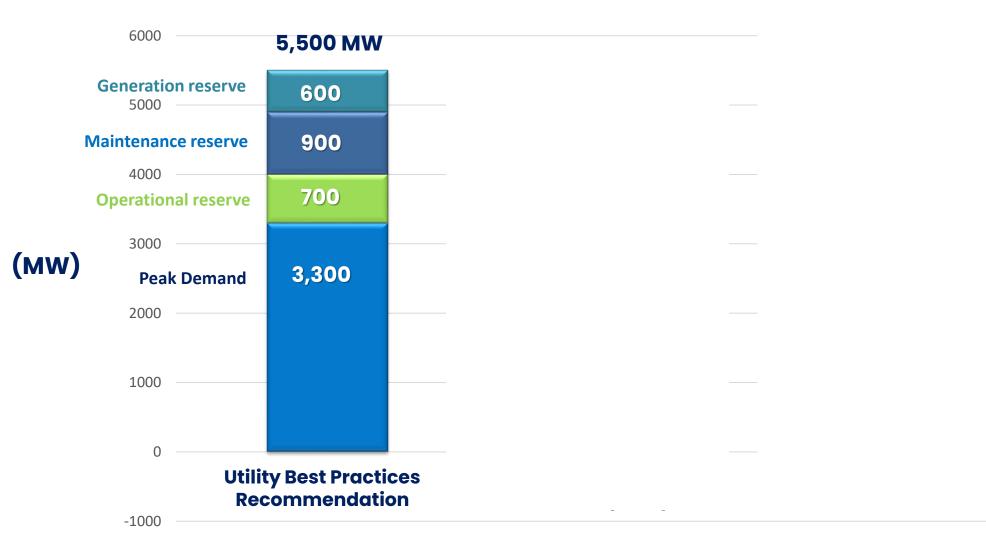

September - October Short-Term Repairs

Generator Repair	Expected Capacity	COD	Total Added Capacity	
Aguirre 1	325 MW	2 nd Week of September	325 MW	
Mayaguez 3B	25 MW	2 nd Week of October		
Daguao Peaker	20 MW	3 rd Week of October	491 MW	
Aguirre CC 2-1, 2-2	96 MW	4 th Week of October	431 101 00	
Aguirre 2	350 MW	October - November		
			816 MW	

GeneraPR

Workplan to Increase Capacity

2023 – 2025 Capacity Increase Goals



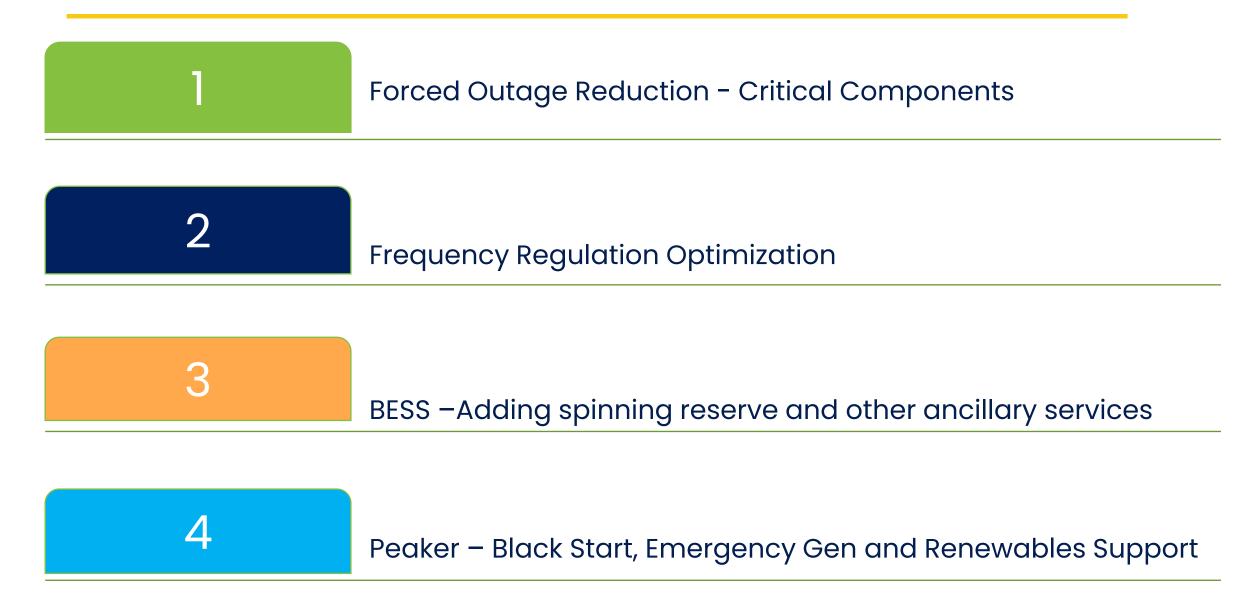
Assumptions:

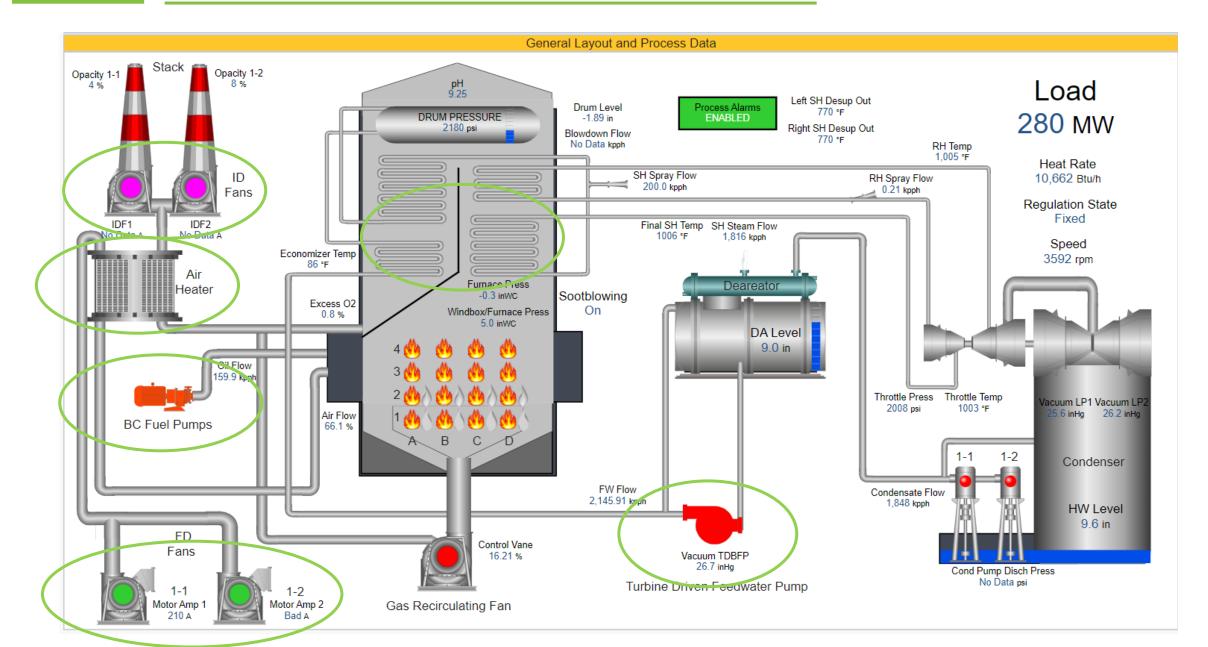
The capacities shown consider private generators assuming they are available at their rated capacity.
 The capacities consider 0 MW in additional FO or maintenance.

Genera's Stabilization 2 Year Plan

2025-2027 Forecast Capacity Improvements

Work Plan to Improve Reliability





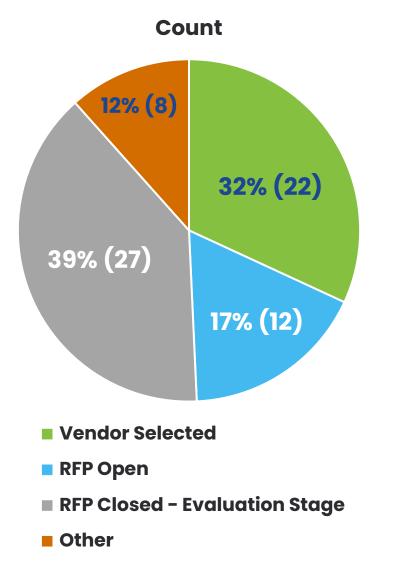
RELIABILITY IMPROVEMENT INITIATIVES

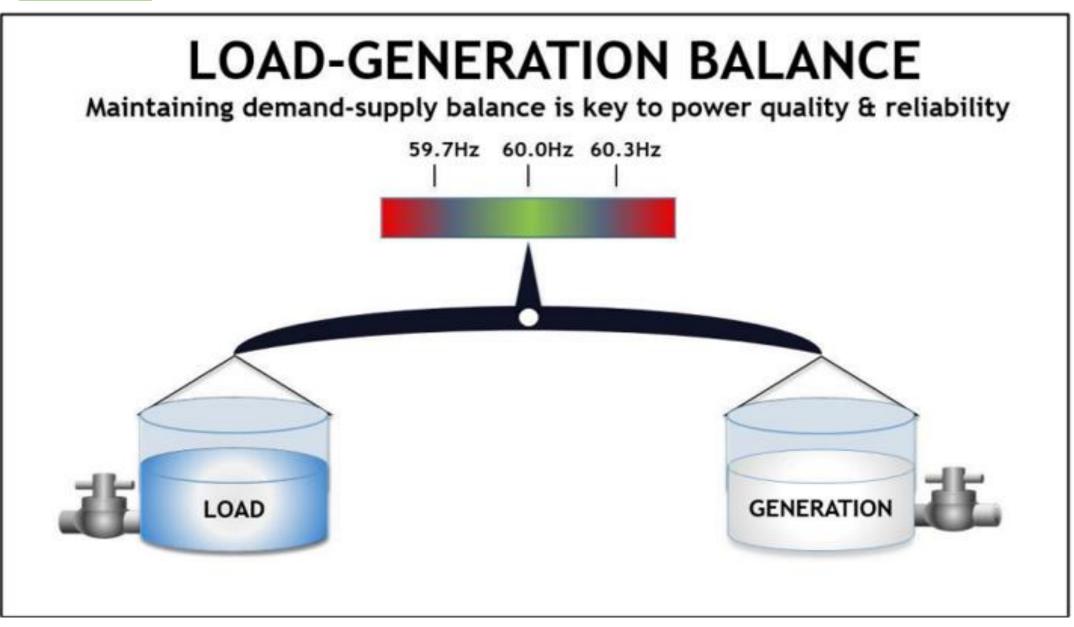
Forced Outage Reduction - Critical Components

Forced Outage Reduction - Critical Components

Goal – reduce Forced Outages in 50%

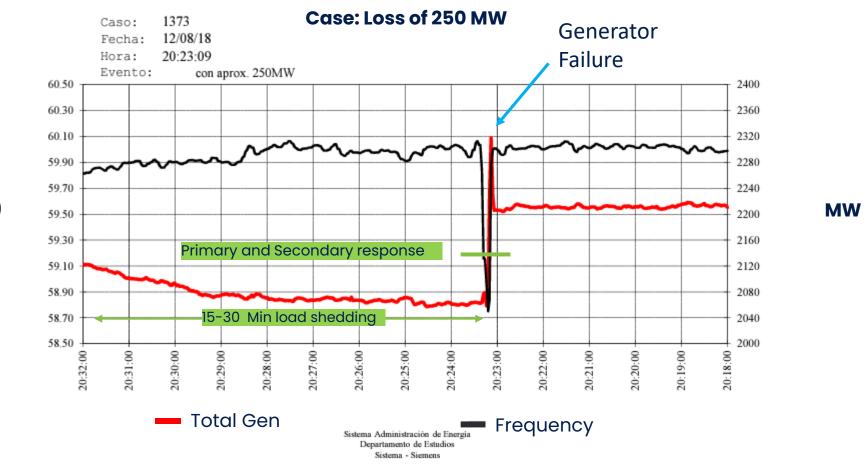
Condenser Circulating Water Pumps Motors

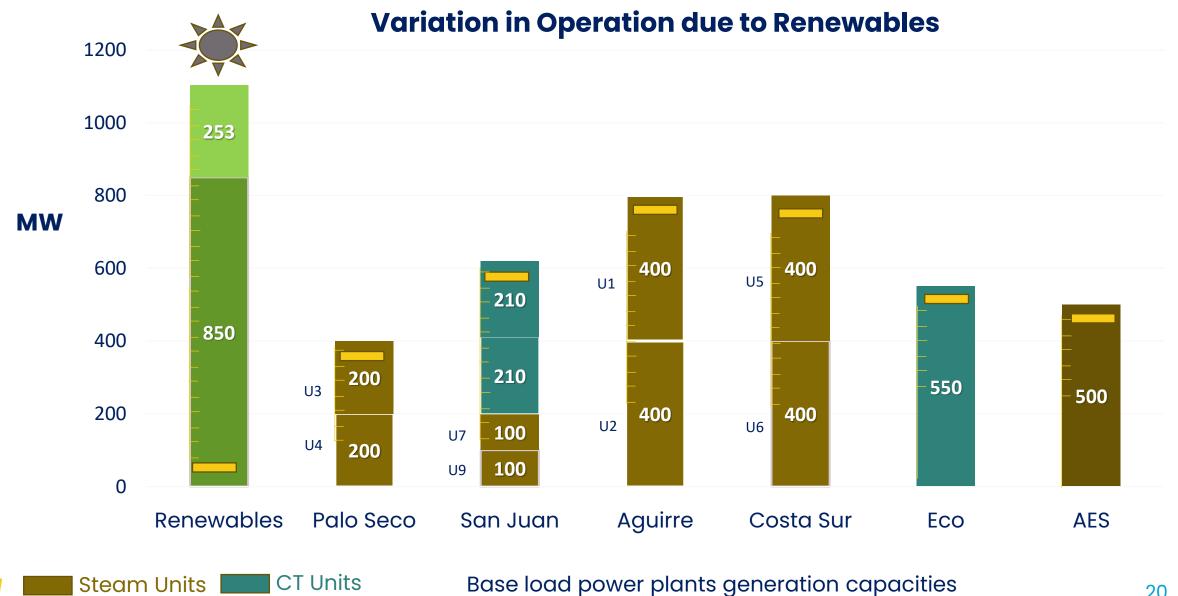

Boiler Air Heaters

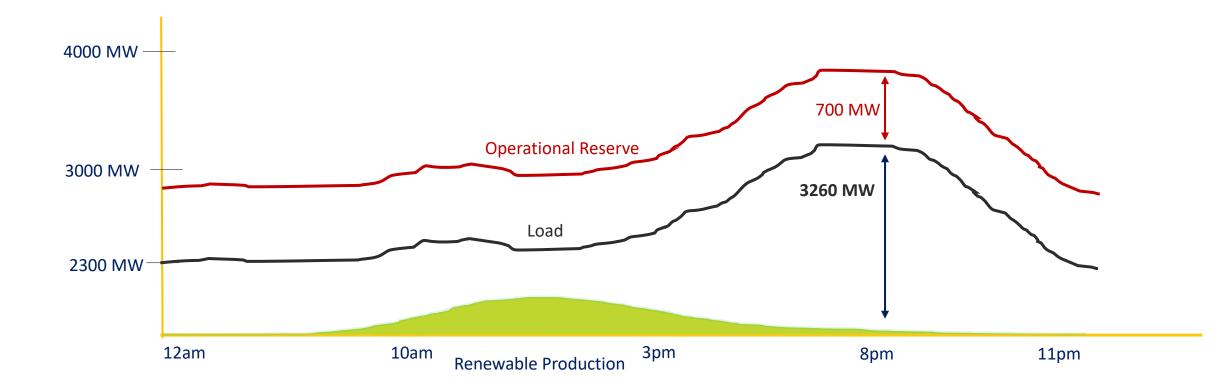


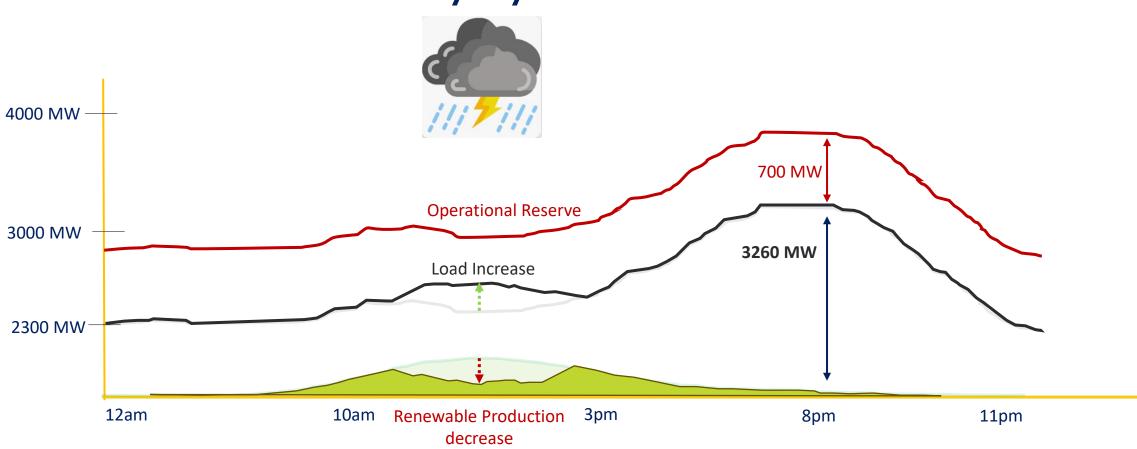
CRITICAL COMPONENTS STATUS

September 2024









Variability in solar power production due to weather

Generator	Frequency Regulation in Operation As of June 30, 2023		Frequency Regulation in Operation As of July 2024	
Costa Sur 5	Ν		Y	30
Costa Sur 6	N		Y	30
Aguirre 1	N		Commissioning	
Aguirre 2	N		Y	80
San Juan 5	N		Commissioning	
San Juan 6	N		Commissioning	
San Juan 7	N		Under assessment	
San Juan 9	N		Y	10
Palo Seco 3	N		Y	20
Palo Seco 4	N		Under assessment	
Total		0 MW		170 MW

BESS – Add spinning reserve and other ancillary services 3 **Proposed Locations and Capacity** Vega Baja **Palo Seco** Cambalache Capacity: 430 MW **52 MW 84 MW 58 MW** Energy: 4 hours = 1,720 MWh Yabucoa **40 MW** GeneraPR **Costa Sur** Aguirre **40 MW 156MW** 24

GeneraPR

Criteria

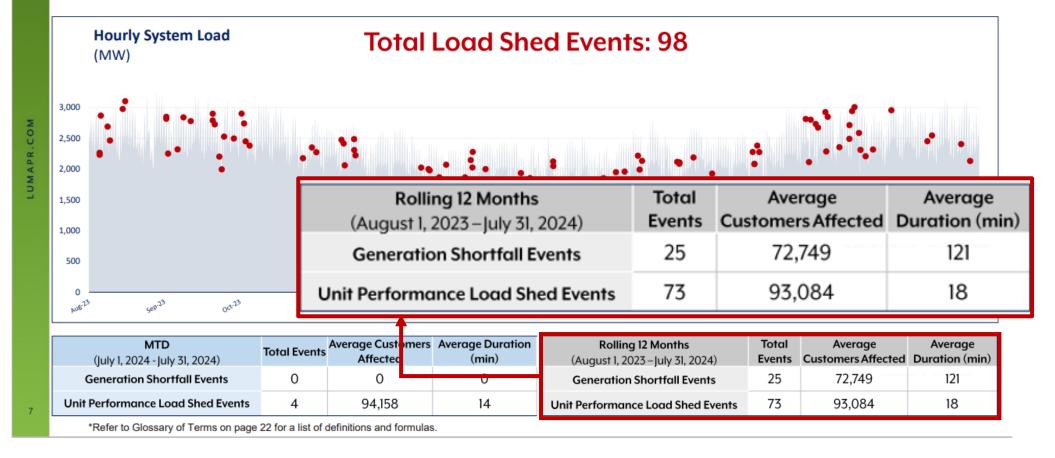
- Brownfield construction (no new TL, right of ways or substation required)
- Maximize the available footprint
- Use existing POI MPT

- Reduced interconnection costs
- System requirements
- Optimize the available injection power capacity without violating thermal, voltage, or stability limits

BESS – Add spinning reserve and other ancillary services

Operation Modes

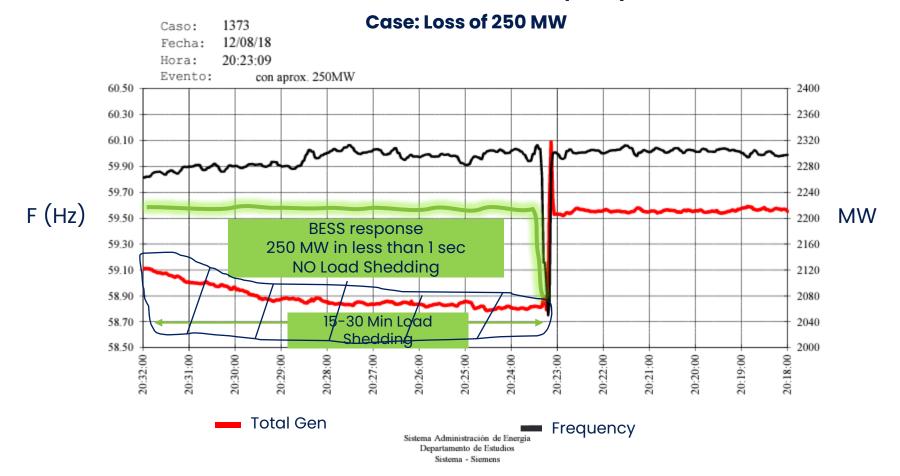
	Ancillary Services	Description
	Fast Spinning Reserve	Instantaneous primary response
2	Frequency Regulation	Inject or absorbs power to follow a regulation signal
3	Load Balance	Uses storage to meet peak- load
4	Energy storage	Energy Storage during lest cost of energy production hours
5	Voltage Support	Inserts or absorbs reactive power to maintain voltage within required ranges on distribution or transmission system
6	Black Start	Helps to restore system after a blackout


	Benefits	How we are going to do it
₽	Reduce Automatic load shedding by 90%	Adding Fast Spinning Reserve
2	Reduce Manual load shedding by 90%	Adding dispatchable capacity of 430 MW for 4 hours
3	Reduce Forced Outages	Adding Frequency Regulation ("shock absorb")
4	Potential savings of over \$100 million	Reduce generation production costs

Load Shed Events

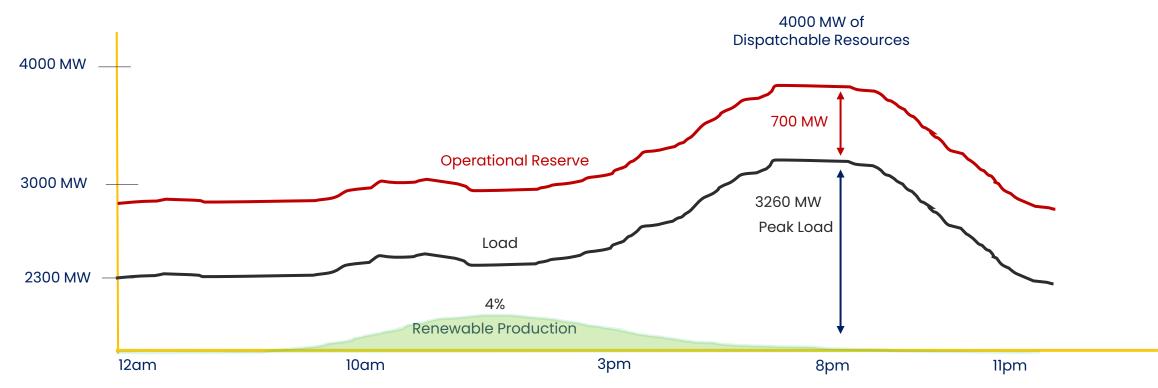
Load shed events can occur due to unexpected generation unit losses (Unit Performance Load Shed Events). Also, when the demand for electricity exceeds available supply levels, LUMA, as the system operator and in compliance with its responsibilities under the T&D OMA, implements load shedding to stabilize the electric system and prevent larger and longer outages (Generation Shortfall Events).

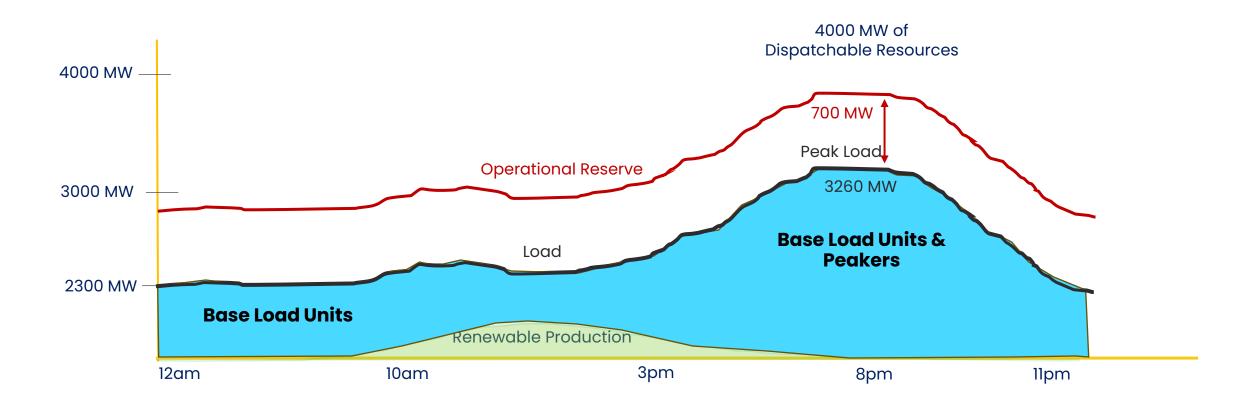
LUMA does not generate energy and can only operate the system with the electricity that is provided by GeneraPR, PREPA, and other island generators.



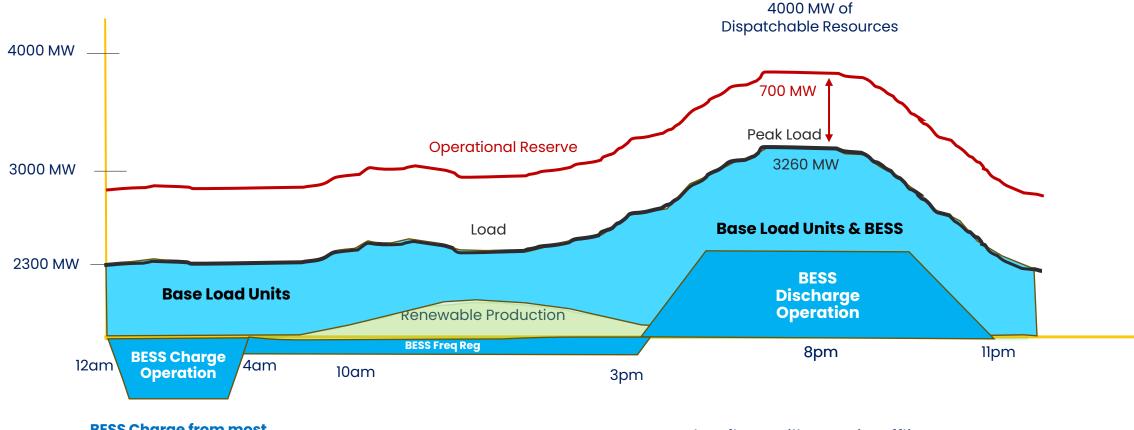
BESS – Add spinning reserve and other ancillary services

3

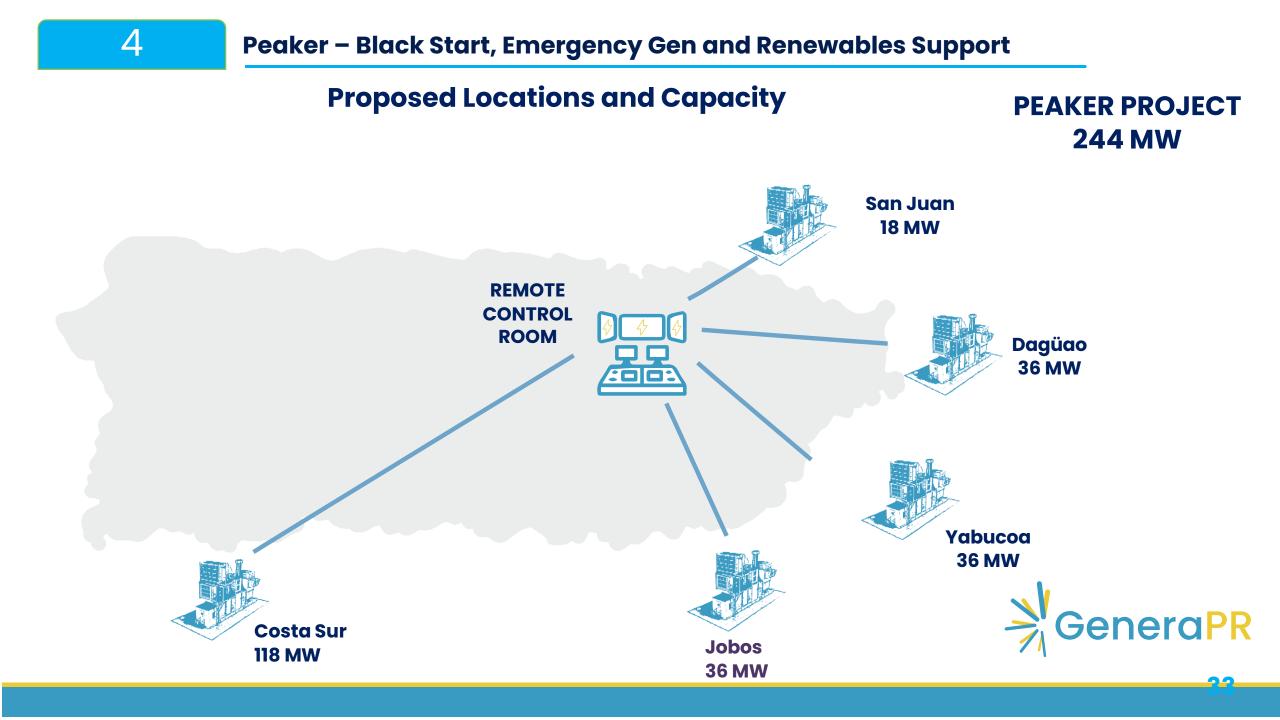

Total Generation and Frequency


BESS Load Balance: Charge-Discharge Operation

Peak Demand 2023



BESS Load Balance: Charge-Discharge Operation



BESS Charge from most economical generation units

Peaker fleet will remain offline

×

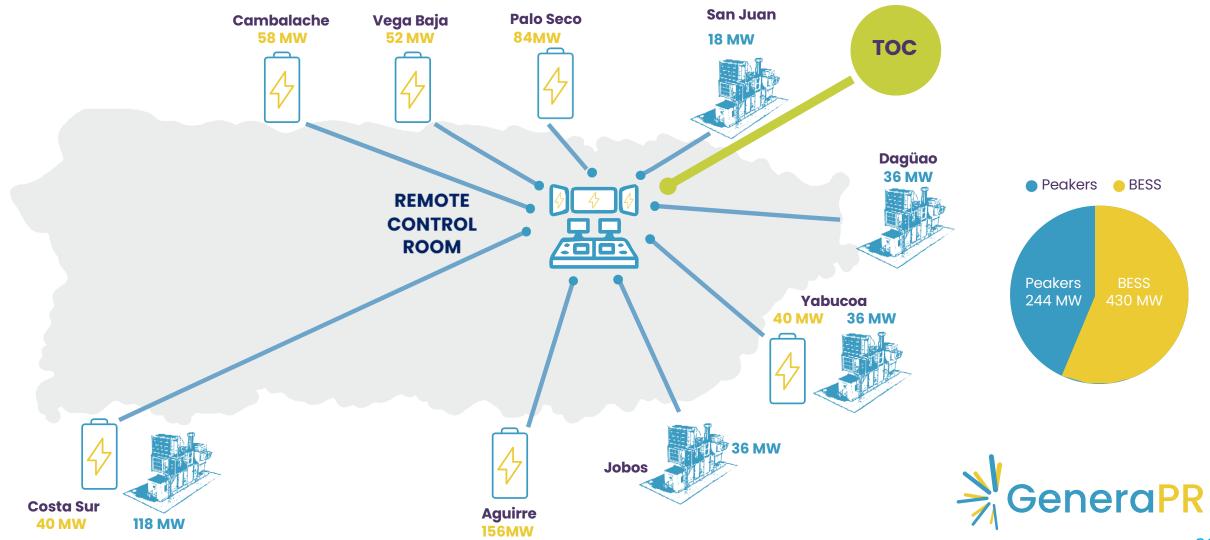
3

Peaker – Black Start, Emergency Gen and Renewables Support

Current Peaker Fleet Description

COD	1970
Capacity	21 MW/ea
Type of Use	Emergency / Black Start
Fuel	Diesel
Heat Rate	15,500 Btu/Kwh (22%)
Capacity Installed	396 MW
Capacity Available	191 MW

New Peaker Fleet Description


High efficiency range	8100 – 9400 Btu/Kwhr (36 - 42%)	
Capacity range	18 – 60 MW	
Fuels	LNG, Diesel, Hydrogen	
Remotely controlled	Yes	
Type of use	Emergency / Black start	
Ancillary Services		
Synch Condenser	Frequency Regulation	
Voltage Control	Short Circuit Capabilities	

4

BENEFITS	DESCRIPTION
Ancillary services	 Off-line spinning reserve Peak Shaving Black Start Capabilities
Flexible Generation	 Fuel Flexibility: LNG, Diesel, Hydrogen Rapid Start-Up and Shut-Down
High Efficiency	 Ranges between 36 and 42% in simple cycle 65% in a combine cycle
Reduce generation production costs	• Savings

Proposed Locations and Capacity

Reliability Improve Plan Summary

Critical Components Replacement

• Reduce Forced Outages in 50%

Frequency Regulation Optimization

- Improve primary response to reduce load shedding
- Improve system stability
- Improve Power Quality

BESS – Battery Energy Storage System

- Reduce 90% of load shedding
- Improve fast spinning reserve
- Improve frequency regulation
- Peak Shaving support
- Improve voltage regulation

Peaker

- Improve black start capabilities
- Increase spinning reserve
- Flexible generation

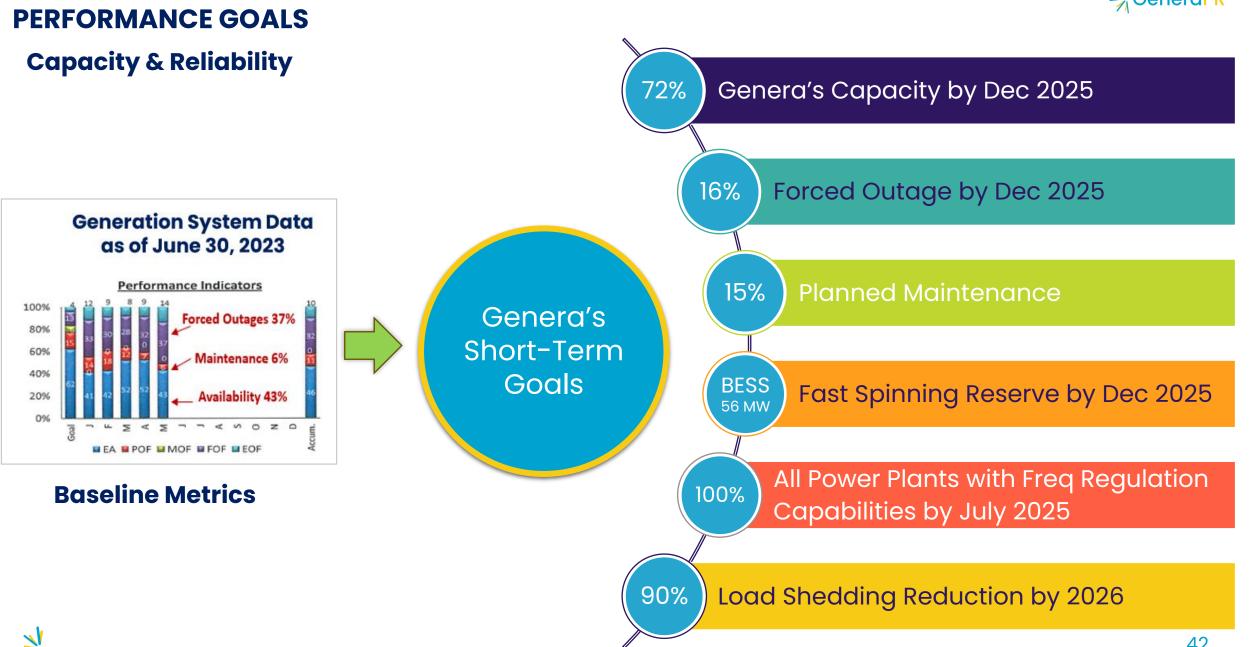
Additional Capacity to Supplement the Electric System

Recommended Project: Supplemental Generation

Add 565 MW of temporary perfect generation on existing location

Scenario		Loss of Load Expectation (LOLE), Days / Year	Loss of Load Hours (LOLH), Hours / Year
Current System (Expected Case)		37.5	194.5
	New Emergency Generation (150 MW)	18.5	86.5
	New Emergency Generation (350 MW)	7.0	29.4
	New Emergency Generation (700 MW)	2.0	8.5
	Retirement of AES Coal	160.8	1,193.6
+	Retirement of AES Coal + Tranche 1 (845 MW Solar PV + 220 MW 4-hr BESS)	90.7	542.6
Current System +	905 MW of 'Perfect Capacity'	0.1	0.3
1 S	045 MW of Standardne Solar F V	30.8	104.0
uren l			
nre	220 MW of Standalone BESS (4-hr)	15.4	87.8
Currer	220 MW of Standalone BESS (4-hr) 845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr) (Tranche 1 Projects)	15.4 14.5	87.8
Currer	845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr)		
Currer	845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr) (Tranche 1 Projects)	14.5	65.1
Currer	845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr) (Tranche 1 Projects) 330 MW Flexible Combined Cycle	14.5 7.3	65.1 26.5
Curre	845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr) (Tranche 1 Projects) 330 MW Flexible Combined Cycle 221 MW (11 CTs x 21) Flexible Combustion Turbine	14.5 7.3 12.1	65.1 26.5 53.3
Curre	845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr) (Tranche 1 Projects) 330 MW Flexible Combined Cycle 221 MW (11 CTs x 21) Flexible Combustion Turbine 250 MW Additional Distributed Solar PV	14.5 7.3 12.1 36.7	65.1 26.5 53.3 178.4
	845 MW Solar PV + 220 MW Solar-Paired BESS (4-hr) (Tranche 1 Projects) 330 MW Flexible Combined Cycle 221 MW (11 CTs x 21) Flexible Combustion Turbine 250 MW Additional Distributed Solar PV 25 MW Demand Response (8 Hour)	14.5 7.3 12.1 36.7 33.4	65.1 26.5 53.3 178.4 172.1

Table 3-2: Calculated Resource Adequacy Risk Measures - All Sensitivity Cases


- **System Composition**: The system comprises multiple generators (i.e., thermal, renewable, hydro).
- December 11, 2023: LUMA presented the Resource Adequacy Report.
 - Scenario of 905MWof "Perfect Capacity" (a generator that can operate 100% of the time).
- March 15, 2024: PREPA purchased 340MW (total) TM2500.
 - 340MW available until December 31, 2025.
 - The TM2500 units are operated and maintained by Genera.
- **Capacity Requirement**: The system must be supplemented with 565MW of Perfect Capacity to achieve a 0.1 LOLE.
- **System Stability**: A stable system would provide additional reserves to perform timely routine maintenance and preventive maintenance projects.

Supplemental Capacity

- **Genera's Suggestion**: PREB should initiate a procurement process to lease additional temporary generation.
- **Project Scope**: This project is for the Electric System, not for Genera.
- **Process Similarity**: The process could be modeled after FEMA/USACE missions.
- **Funding Advocacy**: A multisector group should be formed to advocate for funds to cover the lease expense.
- **Funding Opportunity**: An example is the language included in the Energy and Water Development and Related Agencies Appropriations Bill, 2025, currently pending before Congress.

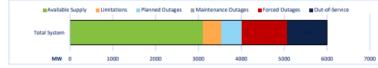
Puerto Rico Power Generation Assets.—The Committee acknowledges that Puerto Rico has faced various natural disasters and economic challenges that have resulted in disruptions in services, such as a reliable and continuous power supply. It is imperative to provide Puerto Rico with power solutions that can be installed and maintained quickly while the necessary repairs and maintenance are carried out on publicly owned power plants and, in parallel, new clean power resources are procured. The Department shall provide to the Committee not later than 60 days after enactment of this Act a report detailing dispatchable generation assets that can be installed on the island and commissioned to inject power into the grid within 60 days or less and be sustained for a minimum of two years. The report shall also include potential funding strategies to secure the energy grid, as well as how the assets can be permitted to operate on an expedited basis without any permitting or dispatch capacity restrictions if required.

APPENDIX

KEY TERMS

TERM	DEFINITION
AG	Aguirre Power Plant
BOP	Balance of Plant
СМВ	Cambalache Power Plant
CS	Costa Sur Power Plant
DG	Daguao Power Plant
JB	Jobos Power Plant
PS	Palo Seco Power Plant
SJ	San Juan Power Plant
VB	Vega Baja Power Plant
YB	Yabucoa Power Plant

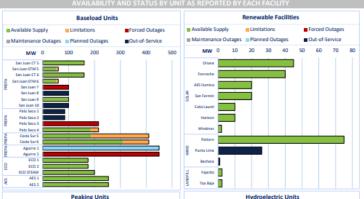
TERM	DEFINITION
BESS	Battery energy storage system
СС	Combined Cycle
CCGT P3	Combined Cycle Gas Turbine Public-Private Partnership
LGA	Legacy Generation Assets
LGA OMA	Puerto Rico Thermal Generation Facilities Operation and Maintenance Agreement
LNG	Liquefied Natural Gas
LOLE	Loss of Load Expectation
MW	Megawatt
NME	Necessary Maintenance Expense
O&M Services	Operation and Maintenance Services
OEM	Original Equipment Manufacturers
POI	Points of Interconnection
POU	Publicly Owned Power Utility
T&D OMA	Puerto Rico Transmission and Distribution System Operation and Maintenance Agreement
T&D System	Transmission and distribution system and related facilities
T&D System Operator	LUMA
ULSD	Ultra-low Sulfur Diesel


Pre-SCD Status

DAILY GENERATION AVAILABILITY REPORT


LUMA is not responsible for generation and is providing this report as part of service to our customers. The report shows the availability generation as reported daily by PREPA and other generators.

System Availability and Status



Availability and Status as reported by PREPA and other generators

DAILY GENERATION AVAILABILITY REPORT

LUMA is not responsible for generation and is providing this report as part of service to our customers. The report shows the availability generation as reported daily by PREPA and other generators.

Available Supply

Againte CC 5 Againte CC 5

Aquirre CC 1-3

Aguirre CC 1-4

ine CC STN

Aguirre CC 2-1

Aguirre CC 2-3 Aguirre CC 2-3

Aguirre CC 2-4

CC STM-3

Aguirre 2-

Aguinte 2-3 Costa Sur 1-3

Costa Sur 1-

Daguao 1-1 Daguao 1-2 Jobos 1-

Jobos 1-3 Palo Seco 1-1

Palo Seco 1-2

Palo Seco 2-1 Palo Seco 2-2

Palo Seco 3-1

Palo Seco 3-3 Palo Seco MP

Palo Seco MP 3

Palo Seco MP 3 Vega Raja 1-1 Vega Raja 1-2 Yabucoa 1-1

Yabucca 1

Viegu Vieques

Culebr

Culebra

ambalach

Mayaguez

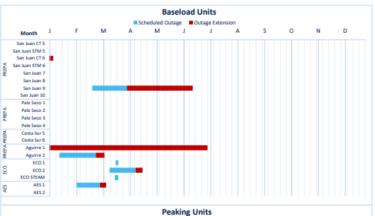
Mayaguez 18

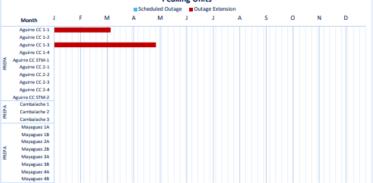
Mayaguez 2A Mayaguez 2B

Mayaguez 34

Mayaguez 38 Mayaguez 44 _

_


MW 0 20



30

DAILY GENERATION AVAILABILITY REPORT

LUMA is not responsible for generation and is providing this report as part of service to our customers. The report shows the availability generation as reported daily by PREPA and other generators.

