GOVERNMENT OF PUERTO RICO PUERTO RICO PUBLIC SERVICE REGULATORY BOARD PUERTO RICO ENERGY BUREAU

IN RE:

INTERCONNECTION REGULATIONS

CASE NO. NEPR-MI-2019-0009

SUBJECT: Motion to Submit Revised Technical Bulletin regarding Smart Inverter Settings Sheets and Request to Substitute Exhibits 1 and 2 Submitted on September 13, 2024

MOTION TO SUBMIT REVISED TECHNICAL BULLETIN REGARDING SMART INVERTER SETTINGS SHEETS AND REQUEST TO SUBSTITUTE EXHIBITS 1 AND 2 SUBMITTED ON SEPTEMBER 13, 2024

TO THE PUERTO RICO ENERGY BUREAU:

COME NOW LUMA Energy ServCo, LLC and LUMA Energy, LLC (collectively

"LUMA"), through the undersigned legal counsel, and respectfully state and request the following:

1. On September 13, 2024, LUMA filed with this Energy Bureau of the Public Service

Regulatory Board ("Energy Bureau") a *Motion to Submit Revised Technical Bulletin Regarding Smart Inverter Settings Sheets Issued by LUMA* ("September 13th Motion") in which it submitted, as an *Exhibit 1*, an updated version of LUMA's Technical Bulletin on Smart Inverter Settings Sheets ("Technical Bulletin"), relating to the compliance by distributed energy resources with the IEEE 1547-2018 standard for smart distributed energy resources settings, and informed that this updated Technical Bulletin took into consideration the comments and suggestions shared by stakeholders. In addition, LUMA submitted as *Exhibit 2* to the September 13th Motion, a redline version of the updated Technical Bulletin showing the changes made to the previous version of the Technical Bulletin submitted to the Energy Bureau on June 21, 2024.

2. LUMA herein informs that, by inadvertence, the version of the Technical Bulletin in Exhibit 1 of the September 13th Motion did not incorporate an additional revision LUMA had

NEPR

Received:

Sep 17, 2024

9:45 PM

made to the Technical Bulletin to address the most recent comments received on this document and therefore that was not the final version of the Technical Bulletin LUMA intended to publish. Likewise, the redline version of the Technical Bulletin submitted as Exhibit 2 to the September 13th Motion also did not reflect all the intended changes to this document.

3. LUMA respectfully submits herein as *Exhibit 1* the correct updated Technical Bulletin containing all the proposed revisions to address stakeholder comments, and as *Exhibit 2* a redline version comparing this version with the version submitted on June 21, 2024.

4. For clarity of the record, LUMA respectfully requests the Energy Bureau to substitute the Exhibits 1 and 2 of the September 13th Motion with Exhibits 1 and 2 of this Motion respectively, and accordingly, consider the Exhibits to this Motion, instead of those in the September 13th Motion, in their evaluation of LUMA's requests in the September 13th Motion. As mentioned in that Motion, LUMA proposes that the effective date for this revised Technical Bulletin be October 17, 2024.

WHEREFORE, LUMA respectfully requests this Honorable Energy Bureau to **take notice** of the above and **accept** LUMA's revised Technical Bulletin attached in *Exhibit 1* herein and the redline version thereof in *Exhibit 2* herein in substitution of the Exhibits 1 and 2, respectively, of the Motion submitted by LUMA on September 13, 2024.

RESPECTFULLY SUBMITTED.

In San Juan, Puerto Rico, this 17th day of September 2024.

We hereby certify that we filed this Motion using the electronic filing system of this Puerto Rico Energy Bureau and that copy of this Motion will be notified to hrivera@jrsp.pr.gov; arivera@gmlex.net; mvalle@gmlex.net; agustin.irizarry@upr.edu; javrua@sesapr.org;

2

contratistas@jrsp.pr.gov; aconer.pr@gmail.com; john.jordan@nationalpfg.com; cfl@mcvpr.com; and mqs@mcvpr.com.

DLA Piper (Puerto Rico) LLC

500 Calle de la Tanca, Suite 401 San Juan, PR 00901-1969 Tel. 787-945-9147 Fax 939-697-6147

/s/ Laura T. Rozas Laura T. Rozas RUA Núm. 10,398 laura.rozas@us.dlapiper.com

Exhibit 1

Revised Technical Bulletin

LUMAPR.COM

SMART INVERTER SETTINGS SHEETS

September 11, 2024

© 2022 LUMA ENERGY, LLC | 644 Fernandez Juncos Ave., Suite 301, San Juan, PR 00907

LUMA Energy publishes the Technical Bulletin 2024-001 to provide supporting technical information to the current regulation, *Regulation for the Interconnection of Generators with the Distribution System of the Puerto Rico Electric Power Authority and to Participate in Net Metering Programs*, Regulation No. 8915, February 6, 2017. This bulletin seeks to apply the IEEE 1547-2018 standard for smart distributed energy resources (DERs) settings. Regulation 8915 in its Article of Control and Protection, #2 indicates that "In addition to the requirements contained in this Section, the customer's DG must comply with applicable standards, including, but not limited to, IEEE 1547, IEEE 519 and IEEE/ANSI C37.90 (Standard for Relays and Relay Systems Associated with Electric Power Apparatus)".

The main purpose of adopting the requirements in this bulletin is to improve the system stability and operations under high penetration of DERs. Starting **October 17, 2024**, all DER applications must indicate the use of inverters meet the utility required default settings and functions that are specified in this bulletin.

Table of Contents

1. Required Smart Inverter Functions	1
1.1. Communication Requirements	1
1.2. Control Modes	1
2. Smart Inverter Function Settings	
2.1. Anti-Islanding Settings	3
2.2. Voltage Settings	3
2.2.1. Voltage Trip Settings	3
2.2.2. Voltage Ride-Through Settings	3
2.3. Frequency Settings	4
2.3.1. Frequency Trip Settings	4
2.3.2. Frequency Ride-Through Settings	4
2.4. Voltage-Reactive Power Control Mode Settings	5
2.5. Voltage-Active Power Control Mode Settings	6
2.6. Ramp Rate Settings	8

List of Tables

Table 1-1- Minimum Requirements for Communication and Interface	1
Table 1-2- Smart Inverter Control Modes	2
Table 2-1- Responses to Islanding and Open Phase Conditions - ACTIVATED	3
Table 2-2- Smart Inverter Response to Abnormal Voltage	3
Table 2-3- Low/High Voltage Ride-Through Minimum Requirement – ACTIVATED	4
Table 2-4- Smart Inverter Response to Abnormal Frequency	4
Table 2-5- Low/High Frequency Ride-Through Minimum Requirement – ACTIVATED	5
Table 2-6- Volt-Var Settings – ACTIVATED	6
Table 2-7- Volt-Watt Settings – ACTIVATED	7

List of Figures

Figure 2-1. Example Volt-Var characteristic	5
Figure 2-2. Example Volt-Watt characteristics	7

1. Required Smart Inverter Functions

Smart Inverters must be (a) UL 1741 SB listed, (b) set to the default setting provided in this document, and (c) perform the default functions, provided in this document, "Smart Inverter Settings Sheets".

Customers must comply with the requirements set forth in this "Smart Inverter Settings Sheets" except where alternative site-specific Smart Invert settings and function statuses are defined in the interconnection agreement as a result of a detailed interconnection study. Any alternative settings and function statuses defined in the interconnection agreement will take precedence and supersede the default settings and function statuses provided in this document. Notwithstanding the following provisions of this "Smart Inverter Settings Sheets", customer's Smart Inverter(s) shall conform with the requirements and functions required pursuant to interconnection agreement.

1.1. Communication Requirements

Table 1-1 lists the eligible communication protocols for Smart Inverters connected to the distribution system. Smart Inverters connecting to the distribution system shall be capable of supporting at least one of these protocols.

Protocol	Transport	Physical Interface/Layer
IEEE 2030.5 (SEP 2.0)	TCP/IP	Ethernet
IEEE 1815 (DNP3)	TCP/IP	Ethernet
	TCP/IP	Ethernet
Sunspec Modbus	N/A	RS-485

Table 1-1- List of eligible communication protocols

1.2. Smart Inverter Functions and Control Modes

Table 1-1 lists functions and control modes that must be supported by Smart Inverters as well as the default status of each function and control mode.

Applicable to Retail Customers Interconnected				
Function/ Control Mode of Operation	Required/Optional	Description	Default Activation Status	
Anti-Islanding	Required	Refers to the ability to detect loss of utility source and cease to energize	Activated	
Constant power factor	Required	Refers to Power Factor set to a fixed value.	Deactivated	
Active Power- Reactive Power	Required	Refers to the control of real power output as a function of reactive power	Deactivated	
Constant Reactive Power	Required	Refers to Reactive Power set to a fixed value	Deactivated	
Voltage Ride through	Required	Refers to ability of Smart Inverter to ride through a certain range of voltages before tripping off	Activated	
Frequency Ride through	Required	Refers to ability of Smart Inverter to ride through a certain range of frequencies before tripping off	Activated	
Voltage – Reactive Power (Volt/Var)	Required	Refers to control of reactive power output as a function of voltage	Activated	
Voltage – Active Power (Volt/Watt)	Required	Refers to control of real power output as a function of voltage	Deactivated for at least 6 months since deployment of this bulletin	
Frequency Droop (Frequency – Watt)	Required	Refers to control of real power as a function of frequency	Activated	
Enter Service	Required	Refers to the ability of smart inverters to begin operation with an energized utility source.	Activated.	
Normal Ramp-up Rates	Optional	Refers to ability to transition between energy output levels over the normal course of operation	Activated, if available	
Connect/Reconnect Ramp- up rate	Required	Refers to ability to have an adjustable entry service ramp rate when a DER restores output of active power	Activated	

Table 1-2- Smart Inverter Control Modes

2. Smart Inverter Function and Control Mode Settings

This section lists the required settings for Smart Inverter functions and control modes.

2.1. Anti-Islanding

Smart Inverters shall detect the unintentional island and trip as specified in Table 2-1.

Table 2-1- Responses to Islanding and Open Phase Conditions - ACTIVATED

Applicable to Retail Customers Interconnected			
Condition	Maximum Trip Time (s)		
Islanding/Open Phase 2			

2.2. Response to Abnormal Voltage

2.2.1. Voltage Trip Settings

Smart Inverters shall meet the abnormal voltage response requirements, as specified in Table 2-2.

Voltage Trip Settings	Default Voltage (pu)	Adjustable Range for Voltage (pu)	Default Trip/Clearing Time (s)	Adjustable Range for Trip Time (s)
Over Voltage 2 (OV2)	V ≥ 1.2	1.2	0.16	Fixed at 0.16
Over Voltage 1 (OV1)	V ≥ 1.1	1.1 - 1.2	13	1 - 13
Under Voltage 1 (UV1)	V ≤ 0.88	0 - 0.88	21	11 - 50
Under Voltage 2 (UV2)	V ≤ 0.5	0 - 0.5	2	2 - 21

Table 2-2- Smart Inverter Response to Abnormal Voltage

2.2.2. Voltage Ride-Through

Smart Inverters shall meet the Low/High Voltage Ride-Through requirements, as specified in Table 2-3.

Voltage Range	Voltage Range (pu)	Operating Mode/Response	Maximum Ride Through Time (s) (design criteria)	Minimum Ride Through Time (s) (Design Criteria)
High Voltage 2	V ≥ 1.2	Cease to Energize	0.16	N/A
High Voltage 1	1.1 < V ≤ 1.2	Momentary Cessation	0.083	12
Near Normal Voltage	0.88 ≤ V ≤ 1.1	Continuous Operation	N/A	Infinite
Low Voltage 1	0.7 ≤ V <0.88	Mandatory Operation	N/A	20
Low Voltage 2	0.5 ≤ V ≤ 0.7	Mandatory Operation	N/A	10
Low Voltage 3	V ≤ 0.5	Momentary Cessation	0.083	1

 Table 2-3- Low/High Voltage Ride-Through Minimum Requirement – ACTIVATED

2.3. Response to Abnormal Frequency

2.3.1. Frequency Trip Settings

Smart Inverters shall meet the abnormal frequency response requirements, as specified in Table 2-4.

Frequency Trip Settings	Default Frequency (Hz)	Adjustable Range for Frequency(Hz)	Default Trip/Clearing Time (s)	Adjustable Range for Trip Time (s)
Over Frequency 2	f ≥ 62	61.8 - 66	0.16	0.16 - 1000
Over Frequency 1	f ≥ 61.2	61.2 - 66	300	21 - 1000
Under Frequency 1	f ≤ 58.5	50 - 58.8	300	21 - 1000
Under Frequency 2	f ≤ 56.5	50 - 57	0.16	0.16 - 1000

Table 2-4- Smart Inverter Response to Abnormal Frequency

2.3.2. Frequency Ride-Through

Smart Inverters shall meet the Low/High Frequency Ride-Through requirements, as specified in Table 2-5.

Frequency Ride-Through Settings	Frequency Range (Hz)	Operating Mode	Minimum Ride Through Time (s)
High Frequency 2	f ≥ 62	N/A	N/A
High Frequency 1	61.2 < f ≤ 62	Mandatory Operation	299
Near Normal Frequency	58.8 ≤ f ≤ 61.2	Continuous Operation	Infinite
Low Frequency 1	57 ≤ f < 58.8	Mandatory Operation	299
Low Frequency 2	f ≤ 57	N/A	N/A

 Table 2-5- Low/High Frequency Ride-Through Minimum Requirement – ACTIVATED

2.4. Voltage-Reactive Power Control Mode Settings

An example Volt-Var characteristic is shown in Figure 2-1. The voltage-reactive power characteristic shall be configured in accordance with the default parameter values specified in Table 2-6.

Figure 2-1. Example Volt-Var characteristic

Volt-Var	Volt-Var Definitions		Allowable Range	
Parameters	Demitions	(% of nominal rating)	Minimum	Maximum
Vref	Dead band center	VN	95% VN	105% VN
V2	Dead band lower voltage limit	98% VN	Vref – 3%VN	Vref
Q2	Reactive power injection or absorption at voltage V2	0	maximum reactive power capability, absorption	maximum reactive power capability, injection
V3	Dead band upper voltage limit	105% VN	Vref	105% VN
Q3	Reactive power injection or absorption at voltage V3	0	maximum reactive power capability, absorption	maximum reactive power capability, injection
V1	Voltage at which DER shall inject Q1 reactive power	92% VN	Vref – 18%VN	V2 – 2%VN
Q1 ⁽¹⁾	Reactive power injection at voltage V1	44%	0	maximum reactive power capability, injection
V4	Voltage at which DER shall absorb Q4 reactive power	108% VN	V3 + 2%VN	Vref + 18%VN
Q4 ⁽¹⁾	Reactive power absorption at voltage V4	44%	maximum reactive power capability, absorption	0
Open loop response time	Time to 90% of the reactive power change in response to the change in voltage	5 sec	1 sec	90 sec

Table 2-6- Volt-Var Settings – ACTIVATED

⁽¹⁾ This requires that the Smart Inverter operates with a reactive power priority and generate/absorb reactive power to the ranges specified in this table irrespective of active power production.

2.5. Voltage-Active Power Control Mode Settings

Two examples of these characteristics are shown in Figure 2-2. The characteristic shall be configured in accordance with the default parameter values specified in Table 2-7.

	Default Cattings	Ranges of allowable settings	
voltage-active power parameters	Derault Settings	Minimum	Maximum
V1	106% VN	105% VN	109% VN
P1	PRATED	NA	NA
V2	110% VN	V1 + 1% VN	110% VN
P2 (applicable to DER that can only generate active power)	The lesser of 0.2 P _{RATED} or P _{MIN} ⁽¹⁾	Р _{МІN}	PRATED
P'2 (applicable to DER that can generate and absorb active power)	0	0	P' _{RATED} ⁽²⁾
Open-loop response time	10 sec	0.5 sec	60 sec

Table 2-7- Volt-Watt Settings – Deactivated ⁽³⁾

 $^{(1)}\,P_{MIN}$ is the minimum active power output in p.u. of the DER rating (i.e., 1.0 p.u.).

 $^{(2)}$ P'_{RATED} is the maximum amount of active power that can be absorbed by the DER.

⁽³⁾ Deactivated for at least 6 months since deployment of this bulletin

2.6. Enter Service Settings

Smart Inverters shall be set to the Enter Service Settings in Table 2-8.

Enter Service Criteria		Ranges of allowable setting		
Permit Service		Enabled Enabled/Disabled		
Applicable voltage within	Minimum value	≥0.88 p.u.	0.88 p.u. to 0.95 p.u.	
range	Maximum value	≤ 1.06 p.u	1.05 p.u. to 1.06 p.u.	
Frequency within range	Minimum value	≥ 59.5 Hz	59 Hz to 59.9 Hz	
	Maximum value	≤ 60.1 Hz	60.1 Hz to 61.0 Hz	
Enter Service Delay		300 <mark>s</mark>	0 seconds to 600 seconds	
Enter Service Randomized Delay		N/A 1 second to 1000 second		
Enter Service Ramp Rate		50 <mark>s</mark>	1 second to 1000 seconds	

Table 2-8- Enter Service Settings

2.7. Ramp Rate Settings

The following is the ramp-rate requirement during normal and reconnection operation of Smart Inverters:

- Normal ramp-up rate (Optional): For transitions between energy output levels over the normal course of operation, the default value is 100% of maximum current output per second with a range of adjustment between 1% to 100%.
- Connect/Reconnect Ramp-up rate: Upon starting power into the grid, following a period of inactivity or a disconnection, the inverter shall wait for 300 seconds before reconnecting and shall be able to control its rate of increase of power from 1 to 100% maximum current per second. The default value is 2% of maximum current output per second. The maximum active power step during restoring output is 20%

Exhibit 2

Redlined Revised Technical Bulletin

LUMAPR.COM

SMART INVERTER SETTINGS SHEETS

SeptemberJanuary 113, 2024

Formatted: Spanish (Puerto Rico)

© 2022 LUMA ENERGY, LLC | 644 Fernandez Juncos Ave., Suite 301, San Juan, PR 00907

VERSION HISTORY:

Version	Date	Description
4	06/20/2022	Initial-Draft
2	10/25/2022	Revised based on LUMA comments
3	01/03/2024	Final document

LUMAPR.COM

LUMA Energy publishes the Technical Bulletin 2024-001 to provide supporting technical information to the current regulation, *Regulation for the Interconnection of Generators with the Distribution System of the Puerto Rico Electric Power Authority and to Participate in Net Metering Programs*, Regulation No. 8915, February 6, 2017. This bulletin seeks to apply the IEEE 1547-2018 standard for smart distributed energy resources (DERs) settings. Regulation 8915 in its Article of Control and Protection, #2 indicates that "In addition to the requirements contained in this Section, the customer's DG must comply with applicable standards, including, but not limited to, IEEE 1547, IEEE 519 and IEEE/ANSI C37.90 (Standard for Relays and Relay Systems Associated with Electric Power Apparatus)".

The main purpose of adopting the requirements in this bulletin is to improve the system stability and operations under high penetration of DERs. Starting <u>October 17April 1</u>, 2024, all DER applications must <u>indicate the use of inverters</u> meet the <u>utility required default settings and functions</u> <u>default setting</u> requirements that are specified in this bulletin.

LUMAPR.COM

Table of Contents

1. I	Required Smart Inverter Functions	1
1.1	. Communication Requirements	1
1.2	. Control Modes	1
2. 9	Smart Inverter Function Settings	. <u>4</u> 3
2.1	. Anti-Islanding Settings	<u>43</u>
2.2	Voltage Settings	4 3
	2.2.1. Voltage Trip Settings	4 3
	2.2.2. Voltage Ride-Through Settings	4 3
2.3	. Frequency Settings	<u>5</u> 4
	2.3.1. Frequency Trip Settings	<u>5</u> 4
	2.3.2. Frequency Ride-Through Settings	54
2.4	Voltage-Reactive Power Control Mode Settings	<u>6</u> 5
2.5	Voltage-Active Power Control Mode Settings	<u>7</u> 6
2.6	Ramp Rate Settings	<u>9</u> 8

List of Tables

Table 1-1- Minimum Requirements for Communication and Interface	1
Table 1-2- Smart Inverter Control Modes	21
Table 2-1- Responses to Islanding and Open Phase Conditions - ACTIVATED	.43
Table 2-2- Smart Inverter Response to Abnormal Voltage	4 3
Table 2-3- Low/High Voltage Ride-Through Minimum Requirement – ACTIVATED	. <u>5</u> 4
Table 2-4- Smart Inverter Response to Abnormal Frequency	54
Table 2-5- Low/High Frequency Ride-Through Minimum Requirement – ACTIVATED	65
Table 2-6- Volt-Var Settings – ACTIVATED	
Table 2-7- Volt-Watt Settings – ACTIVATED	87
5	_

List of Figures

Figure 2-1. Example Volt-Var characteristic	<u>6</u> 5
Figure 2-2. Example Volt-Watt characteristics	<u>8</u> 7

1. Required Smart Inverter Functions

Smart Inverters must be (a) UL 1741 SB listed, (ab) set to conform the default setting requirements provided in this document, and (bc) capable of performing the default functions, both provided in this document, "Smart Inverter Settings Sheets", as applicable.

Customers must comply with the requirements set forth in this "Smart Inverter Settings Sheets" or, anyexcept where alternative_site-specific Smart Invert settings and functions_statuses are that may be defined in the interconnection agreement as a result of a detailed interconnection study. Any alternative settings and function_statusess defined in the interconnection agreement will take precedencet and override_supersede the default settings requirements and function_statusess provided in this document. Notwithstanding the preceding_following provisions of this "Smart Inverter Settings Sheets", customer's Smart Inverter(s) shall conform with the requirements and functions required pursuant to interconnection agreement.

1.1. Communication Requirements

<u>Table 1-1</u><u>Table 1-1</u> lists <u>the eligible minimum</u> communication <u>requirements protocols</u> for Smart Inverters connected to the distribution system. <u>Smart Inverters connecting to the distribution system shall be capable of supporting at least one of these protocols.</u>

Table 1-1- List of eligible communication protocols Minimum Requirements for Communication and Int
--

Protocol	Transport	Physical Interface/Layer
IEEE 1815 (DNP3)/ SunSpec Modbus/ IEEE 2030.5 (S <u>EPep</u> 2.0)	TCP/IP	Ethernet≁ RS-485
<u>IEEE 1815 (DNP3)</u>	TCP/IP	<u>Ethernet</u>
SunSpec Modbus	TCP/IP	<u>Ethernet</u>
	<u>N/A</u>	<u>RS-485</u>

1.2. Smart Inverter Functions and Control Modes

Table 1-1 Table 1-1 lists functions and control modes that must be supported by Smart Inverters as well as the default status of each function and control mode.

Applicable to Retail Customers Interconnected				
Function/ Control Mode of Operation	Required/Optional	Description	Default Activation Status	
Anti-Islanding	Required	Refers to the ability to detect loss of utility source and cease to energize	Activated	
Adjustable_cConstant power factor	Required	Refers to Power Factor set to a fixed value.	Deactivated	
<u>Active Power- Reactive</u> <u>Power</u>	Required	Refers to the control of real power out-put as a function of reactive power	<u>Deactivated</u>	
Adjustable-Constant Reactive Power	Required (If available)	Refers to Reactive Power set to a fixed value	lf capable, dDeactivated	
Voltage Ride through	Required	Refers to ability of Smart Inverter to ride through a certain range of voltages before tripping off	Activated	
Frequency Ride through	Required	Refers to ability of Smart Inverter to ride through a certain range of frequencies before tripping off	Activated	
Voltage – Reactive <u>Power</u> (Volt/Var)	Required	Refers to control of reactive power output as a function of voltage	Activated	
Voltage – Active Power (Volt/Watt)	Required (If available)	Refers to control of real power output as a function of voltage	Activated-Deactivated for at least 6 months since deployment of this bulletin	
<u>Frequency Droop</u> <u>(Frequency — Watt)</u>	Required (If available)	Refers to control of real power as a function of frequency	If capable, d<u>A</u>ea ctivated	
Enter Service	Required	Refers to the ability of smart inverters to begin operation with an energized utility source.	Activated.	
<u>Normal Ramp-up</u> Rates	Required Optional	Refers to ability to have an adjustable entry service ramp rate when a DER restores output of active power or changes output levels over the normal course of operation. Refers to ability to transition between energy output levels over the normal course of operation	Activated <u>, if available</u>	

Table 1-2- Smart Inverter Control Modes

LUMAPR.COM

LUMAPR.COM

2. Smart Inverter Function <u>and Control Mode</u> Settings

This section lists the required settings for <u>sSmart linverter functions and control modes</u>.

2.1. Anti-Islanding Settings

Smart Inverters shall detect the unintentional island and trip as specified in Table 2-1.

Table 2-1- Responses to Islanding and Open Phase Conditions - ACTIVATED

Applicable to Retail Customers Interconnected				
Condition	Maximum Trip Time (s)			
Islanding/Open Phase	2			

2.2. <u>Response to Abnormal Voltage-Settings</u>

2.2.1. Voltage Trip Settings

Smart Inverters shall meet the abnormal voltage response requirements, as specified in Table 2-2.

Table 2-2- Smart Inverter Response to Abnor

Voltage Trip Settings	Default Voltage (pu)	Adjustable Range for Voltage (pu)	Default Trip/Clearing Time (s)	Adjustable Range for Trip Time (s)
Over Voltage 2 (OV2)	V ≥ 1.2	<u>1.2</u> 0.16	0.16 Fixed at 1.2	Fixed at 0.16
Over Voltage 1 (OV1)	V ≥ 1.1	1.1 - 1.2	13	1 - 13
Under Voltage 1 (UV1)	V ≤ 0.88	0 - 0.88	21	11 - 50
Under Voltage 2 (UV2)	V ≤ 0.5	0 - 0.5	2	2 - 21

2.2.2. Voltage Ride-Through Settings

Smart Inverters shall meet the Low/High Voltage Ride-Through requirements, as specified in Table 2-3.

Volt

Voltage R <u>angeide-</u> Through Settings	Voltage Range (pu)	Smart Inverter Response (Operating Mode <u>/Response</u>)	Maximum <u>Ride Through</u> Response Time (s) <u>(design</u> <u>criteria)</u>	Minimum Ride Through Time (s) (<u>Design</u> <u>Criteria)</u>	
High Voltage 2 (HV2)	V ≥ 1.2	Cease to Energize	0.16	N/A	
High Voltage 1 (HV1)	1.1 <u>≤</u> V ≤ 1.2	Momentary Cessation	0.083	12	
Near Normal Voltage (NNV)	0.88 ≤ V ≤ 1.1	Continuous Operation	N/A	Infinite	
Low Voltage 1 (LV1)	0.7 ≤ V <u>≤</u> <-0.88	Mandatory Operation	N/A	20	
Low Voltage 2 (LV2)	0.5 ≤ V ≤ 0.7	Mandatory Operation	N/A	10	
Low Voltage 3 (LV3)	V ≤ 0.5	Momentary	0.083	1	

Table 2-3- Low/High Voltage Ride-Through Minimum Requirement – ACTIVATED

2.3. Response to Abnormal Frequency Settings

2.3.1. Frequency Trip Settings

Smart Inverters shall meet the abnormal frequency response requirements, as specified in Table 2-4.

Frequency Trip Settings	Default Frequency (Hz)	Adjustable Range for <u>FOF1requency</u> -(Hz)	Default Trip/Clearing Time (s)	Adjustable Range for Trip Time (s)
Over Frequency 2 (OF2)	f ≥ 62	61.8 - 66	0.16	0.16 - 1000
Over Frequency 1 (OF1)	f ≥ 61.2	61.2 - 66	300	21 - 1000
Under Frequency 1 (UF1)	f ≤ 58.5	50 - 58.8	300	21 - 1000
Under Frequency 2 (UF2)	f ≤ 5 <u>6.5</u> 7	50 - 57	0.16	0.16 - 1000

Table 2-4- Smart Inverter Response to Abnormal Frequency

2.3.2. Frequency Ride-Through-Settings

Smart Inverters shall meet the Low/High Frequency Ride-Through requirements, as specified in Table 2-5.

Table 2-5- Low/High Frequency Ride-Through Minimum Requirement – ACTIVATED

Frequency Ride-Through Settings	High-Frequency Range (Hz)	High Smart Inverter Response (Operating Mode)	Minimum Ride Through Time (s)
High Frequency 2 (HF2)	f ≥ 62	N/A	N/A
High Frequency 1 (HF1)	61.2 <u>≤</u> f ≤ 62	Mandatory Operation	299
Near Normal Frequency (NNF)	58.8 ≤ f ≤ 61.2	Continuous Operation	Infinite
Low Frequency 1 (LF1)	57 ≤ f <u><</u> 58.8	Mandatory Operation	299
Low Frequency 2 (LF2)	f ≤ 57	N/A	N/A

2.4. Voltage-Reactive Power Control Mode Settings

An example Volt-Var characteristic is shown in <u>Figure 2-1</u>. The voltage-reactive power characteristic shall be configured in accordance with the default parameter values specified in <u>Table 2-6</u>.

Formatted Formatted

LUMAPR.COM

Table 2-6- Volt-Var Settings – ACTIVATED

		Default Values	Allowable Range	
Volt-Var Parameters	Definitions	(% of nominal rating)	Minimum	Maximum
Vref	Dead band center	VN	95% VN	105% VN
V2	Dead band lower voltage limit	98% VN	Vref – 3%VN	Vref
Q2	Reactive power injection or absorption at voltage V2	0	maximum reactive power capability, absorption	maximum reactive power capability, injection
V3	Dead band upper voltage limit	10 <u>5</u> 2% VN	Vref	<u>105% VrefN</u> + 3%VN
Q3	Reactive power injection or absorption at voltage V3	0	maximum reactive power capability, absorption	maximum reactive power capability, injection
V1	Voltage at which DER shall inject Q1 reactive power	92% VN	Vref – 18%VN	V2 – 2%VN
Q1 ⁽¹⁾	Reactive power injection at voltage V1	44%	0	maximum reactive power capability, injection
V4	Voltage at which DER shall absorb Q4 reactive power	108% VN	V3 + 2%VN	Vref + 18%VN
Q4 ⁽¹⁾	Reactive power absorption at voltage V4	44%	maximum reactive power capability, absorption	0
Open loop response time	Time to 90% of the reactive power change in response to the change in voltage	5 sec	1 sec	90 sec

⁽¹⁾ This requires that the Smart Inverter operates with a reactive power priority and generate/absorb reactive power to the ranges specified in this table irrespective of active power production.

2.5. Voltage-Active Power Control Mode Settings

Two examples of these characteristics are shown in <u>Figure 2-2</u>. The characteristic shall be configured in accordance with the default parameter values specified in Table 2-7.

LUMAPR.COM

Figure 2-2. Example Volt-Watt characteristics

Table 2-7- Volt-Watt Settings – Deactivated (3) ACTIVATED

		Ranges of allowable settings	
voltage-active power parameters	Default Settings	Minimum	Maximum
V1	106% VN	105% VN	109% VN
P1	PRATED	NA	NA
V2	110% VN	V1 + 1% VN	110% VN
P2 (applicable to DER that can only generate active power)	The lesser of 0.2 P _{RATED} or P _{MIN} ⁽¹⁾	P _{MIN}	PRATED
P'2 (applicable to DER that can generate and absorb active power)	0	0	P'RATED ⁽²⁾
Open-loop response time	10 sec	0.5 sec	60 sec

 $^{(1)}$ P_{MIN} is the minimum active power output in p.u. of the DER rating (i.e., 1.0 p.u.). $^{(2)}$ P'_{RATED} is the maximum amount of active power that can be absorbed by the DER. $^{(3)}$ Deactivated for at least 6 months since deployment of this bulletin

LUMAPR.COM

1

LUMA

Smart Inverter Settings Sheet

Formatted

Formatted

Formatted

Formatted

Formatted

....

<u>...</u>

....

(...

(...

2.6. Enter Service Settings

Smart Inverters shall be set to the Enter Service Settings in Table 2-8.

Table 2-8- Enter Service Settings					
Enter Service Criteria		Default Setting	Ranges of allowable settings		
Permit Service		Enabled	Enabled/Disabled	•	
Applicable voltage within	Minimum value	<u>≥0.88 p.u.</u>	<u>0.88 p.u. to 0.95 p.u.</u>	•	
range	Maximum value	<u>≤1.06 p.u</u>	<u>1.05 p.u. to 1.06 p.u.</u>	•	
Frequency within range	Minimum value	<u>≥ 59.5 Hz</u>	59 Hz to 59.9 Hz		
	Maximum value	<u>≤ 60.1 Hz</u>	60.1 Hz to 61.0 Hz	-	
Enter Service Delay		<u>,300 s</u>	0 seconds to 600 seconds		
Enter Service Randomized Delay		N/A	1 second to 1000 seconds		
Enter Service Ramp Rate		<u>50 s</u>	1 second to 1000 seconds	•	

2.6.2.7. Ramp Rate Settings

The following is the ramp-rate requirement during normal and reconnection operation of Smart Inverters:

- Normal ramp-up rate <u>(Optional)</u>: For transitions between energy output levels over the normal course of operation, the default value is 100% of maximum current output per second with a range of adjustment between 1% to 100%.
- Connect/Reconnect Ramp-up rate: Upon starting power into the grid, following a period of
 inactivity or a disconnection, the inverter shall wait for 300 seconds before reconnecting and shall
 be able to control its rate of increase of power from 1 to 100% maximum current per second. The
 default value is 2% of maximum current output per second. The maximum active power step
 during restoring output is 20%

LUMAPR.COM